Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates (original) (raw)
References
Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004. MATH Google Scholar
Brett J. M., Yiannakopolous G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225. Article Google Scholar
Klaseboer E., Hung K., Wang C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413. ArticleMATH Google Scholar
Kerabchi N., Merouani S., Hamdaoui O. Depth effect on the inertial collapse of cavitation bubble under ultrasound: Special emphasis on the role of the wave attenuation [J]. Ultrasonics Sonochemistry, 2018, 48: 136–150. Article Google Scholar
Wang S. P., Zhang A. M., Liu Y. L. et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–991. Article Google Scholar
Shan M. L., Zhu C. P., Zhou X. et al. Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method [J]. Journal of Hydrodynamics, 2016, 28(3): 442–450. Article Google Scholar
Minsier V., Proost J. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning [J]. Ultrasonics Sonochemistry, 2008, 15: 598–604. Article Google Scholar
Parizot L., Dutilleul H., Galvez M. E. et al. Physical and chemical characterization of shock-induced cavitation [J]. Ultrasonics Sonochemistry, 2020, 69: 105270. Article Google Scholar
Bailey M. R., McAteer J. A., Pishchalnikov Y. A. et al. Progress in lithotripsy research [J]. Acoustics Today, 2006, 2(2): 18–29. Article Google Scholar
Freund J. B., Colonius T., Evan A. P. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy [J]. Ultrasound in Medicine and Biology, 2007, 33(9): 1495–1503. Article Google Scholar
Johnsen E., Colonius T. Shock-induced collapse of a gas bubble in shockwave lithotripsy [J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020. Article Google Scholar
Maeda K., Colonius T., Kreider W. Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3307. Article Google Scholar
Zhang Y. N., Xie X. Y., Zhang Y. X. High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall [J]. Journal of Hydrodynamics, 2018, 30(6): 1012–1021. Article Google Scholar
Supponen O., Obreschkow D., Tinguely M. et al. Scaling laws for jets of single cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 802: 263–293. Article Google Scholar
Cui J., Chen Z. P., Wang Q. et al. Experimental studies of bubble dynamics inside a corner [J]. Ultrasonics Sonochemistry, 2020, 64: 104951. Article Google Scholar
Wang S. P., Wang Q., Zhang A. M. et al. Experimental observations of the behaviour of a bubble inside a circular rigid tube [J]. International Journal of Multiphase Flow, 2019, 121: 103096. Article Google Scholar
Dadvand A., Khoo B. C., Shervani-Tabar M. T. A collapsing bubble-induced microinjector: an experimental study [J]. Experiments in Fluids, 2009, 46(3): 419–434. Article Google Scholar
Dadvand A., Dawoodian M., Khoo B. C. et al. Spark-enerated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation [J]. Acta Mechanica Sinica, 2013, 29(5): 657–666. Article Google Scholar
Liu Y., Zhang A. M., Tian Z. et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190. Article Google Scholar
Tian Z., Liu Y., Zhang A. M. et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method [J]. Computers and Fluids, 2018, 170: 41–52. ArticleMathSciNetMATH Google Scholar
Li T., Wang S., Li S. et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58. Article Google Scholar
Qin Z., Alehossein H. Heat transfer during cavitation bubble collapse [J]. Applied Thermal Engineering, 2016, 105: 1067–1075. Article Google Scholar
Koukouvinis P., Gavaises M., Supponen O. et al. Numerical simulation of a collapsing bubble subject to gravity [J]. Physics of Fluids, 2016, 28(3): 032110. Article Google Scholar
Koch M., Lechner C., Reuter F. et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM [J]. Computers and Fluids, 2016, 126: 71–90. ArticleMathSciNetMATH Google Scholar
Tang H., Liu Y. L., Cui P. et al., Numerical study on the bubble dynamics in a broken confined domain [J]. Journal of Hydrodynamics, 2020, 32(6): 1029–1042. Article Google Scholar
Ma Y., Mohebbi R., Rashidi M. M. et al. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure [J]. International Journal of Heat and Mass Transfer, 2019, 130: 123–134. Article Google Scholar
Bakhshan M., Wörner M., Dadvand A. Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method [J]. Computational Particle Mechanics, 2021, 8: 973–991. Article Google Scholar
Zhang Z., Wang C., Zhang A. M. et al. SPH-BEM simulation of underwater explosion and bubble dynamics near rigid wall [J]. Science China Technological Sciences, 2019, 62(7): 1082–1093. Article Google Scholar
Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223. ArticleMathSciNetMATH Google Scholar
Wang Q., Mahmud M., Cui J. et al. Numerical investigation of bubble dynamics at a corner [J]. Physics of Fluids, 2020, 32(5): 053306. Article Google Scholar
Andrews E. D., Rivas D. F., Peters I. R. Cavity collapse near slot geometries [J]. Journal of Fluid Mechanics, 2020, 901: A29. ArticleMathSciNetMATH Google Scholar
Li S., van der Meer D., Zhang A. M. et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features [J]. International Journal of Multiphase Flow, 2020, 122: 103143. ArticleMathSciNet Google Scholar
Brujan E., Keen G., Vogel A. et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary [J]. Physics of Fluids, 2002, 14(1): 85–92. ArticleMATH Google Scholar
Aziz I. A., Manmi K. M., Saeed R. K. et al. Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method [J]. Engineering Analysis with Boundary Elements, 2019, 109: 19–31. ArticleMathSciNetMATH Google Scholar
Liu Y., Wang S., Zhang A. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28: 062105. Article Google Scholar
Aganin A., Guseva T., Kosolapova L. Impact of a cavitation bubble on a wall [J]. Russian Aeronautics, 2017, 60: 391–397. Article Google Scholar
Calvisi M., Iloreta J., Szeri A. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse [J]. Journal of Fluid Mechanics, 2008, 616: 63–97. ArticleMATH Google Scholar
Curtiss G., Leppinen D., Wang Q. et al. Ultrasonic cavitation near a tissue layer [J]. Journal of Fluid Mechanics, 2013, 730: 245–272. ArticleMathSciNetMATH Google Scholar
Wang Q., Manmi K. Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound [J]. Physics of Fluids, 2014, 26(3): 032104. ArticleMATH Google Scholar
Wang Q., Manmi K., Calvisi M. L. Numerical modeling of the 3D dynamics of ultrasound contrast agent micro-bubbles using the boundary integral method [J]. Physics of Fluids, 2015, 27: 022104. ArticleMATH Google Scholar
Manmi K., Wang Q. Acoustic microbubble dynamics with viscous effects [J]. Ultrasonics Sonochemistry, 2017, 36: 427–436. Article Google Scholar
Huang X., Hu H., Li S. et al. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field [J]. Ultrasonics Sonochemistry, 2020, 64: 104969. Article Google Scholar
Brebbia C. A. The boundary element method for engineers [M]. London, UK: Pentech Press, 1980. Google Scholar
Duffy D. G. Green’s functions with applications [M]. Los Angeles, USA: CRC Press, 2015. BookMATH Google Scholar
Myint-U T., Debnath L. Linear partial differential equations for scientists and engineers [M]. New York, USA: Springer Science and Business Media, 2007. MATH Google Scholar
Geankoplis C. J. Transport processes and separation process principles: (includes unit operations) [M]. New York, USA: Prentice Hall Press, 2003. Google Scholar
Li Z., Sun L., Zong Z. et al. Some dynamical characteristics of a non-spherical bubble in proximity to a free surface [J] Acta Mechanica, 2012, 223(11): 2331–2355. ArticleMathSciNetMATH Google Scholar
Dong C. S., Wang G. Z. Curvatures estimation on triangular mesh [J]. Journal of Zhejiang University-Science A, Applied Physics and Engineering, 2005, 6: 128–136. MATH Google Scholar
Wang Q. Local energy of a bubble system and its loss due to acoustic radiation [J]. Journal of Fluid Mechanics, 2016, 797: 201–230. ArticleMathSciNetMATH Google Scholar
Calvisi M. L., Lindau O., Blake J. R. et al. Shape stability and violent collapse of microbubbles in acoustic traveling waves [J]. Physics of Fluids, 2007, 19(4): 047101. ArticleMATH Google Scholar
Blake J. R., Leppinen D. M., Wang Q. Cavitation and bubble dynamics: The Kelvin impulse and its applications [J]. Interface Focus, 2015, 5(5): 20150017. Article Google Scholar