Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates (original) (raw)

References

  1. Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004.
    MATH Google Scholar
  2. Brett J. M., Yiannakopolous G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225.
    Article Google Scholar
  3. Klaseboer E., Hung K., Wang C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413.
    Article MATH Google Scholar
  4. Kerabchi N., Merouani S., Hamdaoui O. Depth effect on the inertial collapse of cavitation bubble under ultrasound: Special emphasis on the role of the wave attenuation [J]. Ultrasonics Sonochemistry, 2018, 48: 136–150.
    Article Google Scholar
  5. Wang S. P., Zhang A. M., Liu Y. L. et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–991.
    Article Google Scholar
  6. Shan M. L., Zhu C. P., Zhou X. et al. Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method [J]. Journal of Hydrodynamics, 2016, 28(3): 442–450.
    Article Google Scholar
  7. Minsier V., Proost J. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning [J]. Ultrasonics Sonochemistry, 2008, 15: 598–604.
    Article Google Scholar
  8. Parizot L., Dutilleul H., Galvez M. E. et al. Physical and chemical characterization of shock-induced cavitation [J]. Ultrasonics Sonochemistry, 2020, 69: 105270.
    Article Google Scholar
  9. Bailey M. R., McAteer J. A., Pishchalnikov Y. A. et al. Progress in lithotripsy research [J]. Acoustics Today, 2006, 2(2): 18–29.
    Article Google Scholar
  10. Freund J. B., Colonius T., Evan A. P. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy [J]. Ultrasound in Medicine and Biology, 2007, 33(9): 1495–1503.
    Article Google Scholar
  11. Johnsen E., Colonius T. Shock-induced collapse of a gas bubble in shockwave lithotripsy [J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020.
    Article Google Scholar
  12. Maeda K., Colonius T., Kreider W. Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3307.
    Article Google Scholar
  13. Zhang Y. N., Xie X. Y., Zhang Y. X. High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall [J]. Journal of Hydrodynamics, 2018, 30(6): 1012–1021.
    Article Google Scholar
  14. Supponen O., Obreschkow D., Tinguely M. et al. Scaling laws for jets of single cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 802: 263–293.
    Article Google Scholar
  15. Cui J., Chen Z. P., Wang Q. et al. Experimental studies of bubble dynamics inside a corner [J]. Ultrasonics Sonochemistry, 2020, 64: 104951.
    Article Google Scholar
  16. Wang S. P., Wang Q., Zhang A. M. et al. Experimental observations of the behaviour of a bubble inside a circular rigid tube [J]. International Journal of Multiphase Flow, 2019, 121: 103096.
    Article Google Scholar
  17. Dadvand A., Khoo B. C., Shervani-Tabar M. T. A collapsing bubble-induced microinjector: an experimental study [J]. Experiments in Fluids, 2009, 46(3): 419–434.
    Article Google Scholar
  18. Dadvand A., Dawoodian M., Khoo B. C. et al. Spark-enerated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation [J]. Acta Mechanica Sinica, 2013, 29(5): 657–666.
    Article Google Scholar
  19. Liu Y., Zhang A. M., Tian Z. et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190.
    Article Google Scholar
  20. Tian Z., Liu Y., Zhang A. M. et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method [J]. Computers and Fluids, 2018, 170: 41–52.
    Article MathSciNet MATH Google Scholar
  21. Li T., Wang S., Li S. et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58.
    Article Google Scholar
  22. Qin Z., Alehossein H. Heat transfer during cavitation bubble collapse [J]. Applied Thermal Engineering, 2016, 105: 1067–1075.
    Article Google Scholar
  23. Koukouvinis P., Gavaises M., Supponen O. et al. Numerical simulation of a collapsing bubble subject to gravity [J]. Physics of Fluids, 2016, 28(3): 032110.
    Article Google Scholar
  24. Koch M., Lechner C., Reuter F. et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM [J]. Computers and Fluids, 2016, 126: 71–90.
    Article MathSciNet MATH Google Scholar
  25. Tang H., Liu Y. L., Cui P. et al., Numerical study on the bubble dynamics in a broken confined domain [J]. Journal of Hydrodynamics, 2020, 32(6): 1029–1042.
    Article Google Scholar
  26. Ma Y., Mohebbi R., Rashidi M. M. et al. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure [J]. International Journal of Heat and Mass Transfer, 2019, 130: 123–134.
    Article Google Scholar
  27. Bakhshan M., Wörner M., Dadvand A. Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method [J]. Computational Particle Mechanics, 2021, 8: 973–991.
    Article Google Scholar
  28. Zhang Z., Wang C., Zhang A. M. et al. SPH-BEM simulation of underwater explosion and bubble dynamics near rigid wall [J]. Science China Technological Sciences, 2019, 62(7): 1082–1093.
    Article Google Scholar
  29. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223.
    Article MathSciNet MATH Google Scholar
  30. Wang Q., Mahmud M., Cui J. et al. Numerical investigation of bubble dynamics at a corner [J]. Physics of Fluids, 2020, 32(5): 053306.
    Article Google Scholar
  31. Andrews E. D., Rivas D. F., Peters I. R. Cavity collapse near slot geometries [J]. Journal of Fluid Mechanics, 2020, 901: A29.
    Article MathSciNet MATH Google Scholar
  32. Li S., van der Meer D., Zhang A. M. et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features [J]. International Journal of Multiphase Flow, 2020, 122: 103143.
    Article MathSciNet Google Scholar
  33. Brujan E., Keen G., Vogel A. et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary [J]. Physics of Fluids, 2002, 14(1): 85–92.
    Article MATH Google Scholar
  34. Aziz I. A., Manmi K. M., Saeed R. K. et al. Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method [J]. Engineering Analysis with Boundary Elements, 2019, 109: 19–31.
    Article MathSciNet MATH Google Scholar
  35. Pearson A., Blake J., Otto S. Jets in bubbles [J]. Journal of Engineering Mathematics, 2004, 48: 391–412.
    Article MathSciNet MATH Google Scholar
  36. Liu Y., Wang S., Zhang A. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28: 062105.
    Article Google Scholar
  37. Aganin A., Guseva T., Kosolapova L. Impact of a cavitation bubble on a wall [J]. Russian Aeronautics, 2017, 60: 391–397.
    Article Google Scholar
  38. Calvisi M., Iloreta J., Szeri A. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse [J]. Journal of Fluid Mechanics, 2008, 616: 63–97.
    Article MATH Google Scholar
  39. Curtiss G., Leppinen D., Wang Q. et al. Ultrasonic cavitation near a tissue layer [J]. Journal of Fluid Mechanics, 2013, 730: 245–272.
    Article MathSciNet MATH Google Scholar
  40. Wang Q., Manmi K. Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound [J]. Physics of Fluids, 2014, 26(3): 032104.
    Article MATH Google Scholar
  41. Wang Q., Manmi K., Calvisi M. L. Numerical modeling of the 3D dynamics of ultrasound contrast agent micro-bubbles using the boundary integral method [J]. Physics of Fluids, 2015, 27: 022104.
    Article MATH Google Scholar
  42. Manmi K., Wang Q. Acoustic microbubble dynamics with viscous effects [J]. Ultrasonics Sonochemistry, 2017, 36: 427–436.
    Article Google Scholar
  43. Huang X., Hu H., Li S. et al. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field [J]. Ultrasonics Sonochemistry, 2020, 64: 104969.
    Article Google Scholar
  44. Brebbia C. A. The boundary element method for engineers [M]. London, UK: Pentech Press, 1980.
    Google Scholar
  45. Duffy D. G. Green’s functions with applications [M]. Los Angeles, USA: CRC Press, 2015.
    Book MATH Google Scholar
  46. Myint-U T., Debnath L. Linear partial differential equations for scientists and engineers [M]. New York, USA: Springer Science and Business Media, 2007.
    MATH Google Scholar
  47. Geankoplis C. J. Transport processes and separation process principles: (includes unit operations) [M]. New York, USA: Prentice Hall Press, 2003.
    Google Scholar
  48. Li Z., Sun L., Zong Z. et al. Some dynamical characteristics of a non-spherical bubble in proximity to a free surface [J] Acta Mechanica, 2012, 223(11): 2331–2355.
    Article MathSciNet MATH Google Scholar
  49. Dong C. S., Wang G. Z. Curvatures estimation on triangular mesh [J]. Journal of Zhejiang University-Science A, Applied Physics and Engineering, 2005, 6: 128–136.
    MATH Google Scholar
  50. Wang Q. Local energy of a bubble system and its loss due to acoustic radiation [J]. Journal of Fluid Mechanics, 2016, 797: 201–230.
    Article MathSciNet MATH Google Scholar
  51. Calvisi M. L., Lindau O., Blake J. R. et al. Shape stability and violent collapse of microbubbles in acoustic traveling waves [J]. Physics of Fluids, 2007, 19(4): 047101.
    Article MATH Google Scholar
  52. Blake J. R., Leppinen D. M., Wang Q. Cavitation and bubble dynamics: The Kelvin impulse and its applications [J]. Interface Focus, 2015, 5(5): 20150017.
    Article Google Scholar

Download references