Quantification of the Biogenic Silica Dissolution in Southern Ocean Sediments | Quaternary Research | Cambridge Core (original) (raw)

Article contents

Abstract

A transfer function has been established to quantify the dissolution of diatom silica in Southern Ocean sediments. The relationship between the amount of silica dissolution and changes in diatom species distribution is built by controlled progressive dissolution of biogenic silica in five recent sediment samples from box-core tops, each representative of a modern diatom species sediment assemblage. The amount of dissolved silica was measured for each experiment. The resulting data set of species abundances (42 samples containing 32 diatom species and 2 silicoflagellate genera) was added to the modern data base of diatom species distributed over the Southern Ocean (124 core tops). Q-mode factor analysis individualizes four factors explaining 83% of the variance. The first three factors are controlled by surface water properties (mostly temperature). The fourth factor is the only one correlated with loss of silica in the reference samples (R = 0.900). We quantified the dissolution factor using this correlation: superficial sediments of the Southeast Indian Ocean are characterized, from low to high latitudes, by a decrease in silica loss by dissolution (from >50 to 10%) from the Subantarctic Zone (40°S) to around 55°S, followed by an increase of silica loss to values larger than 60% between 63° and 68°S. Application of the dissolution factor in two cores from the Southern Ocean (≈44° and 55°S) shows enhanced opal dissolution during the last glaciation, particularly during Emiliani's stage 3 (from 40,000 to 30,000 yr B.P.).

Type

Research Article

Copyright

University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelmann, A. Gersonde, R. Spiess, V., (1990). Pliocene-Pleistocene plaeoceanography in the Weddell Sea—Siliceous microfossil evidence Bleil, U. Thiede, J. Geological History of the Polar Oceans: Arctic versus Antarctic NATO ASI Series, C 308 729–759 Google Scholar

Bard, E. Labeyrie, L.D. Arnold, M. Labracherie, M. Pichon, J.J. Duprat, J. Duplessy, J.C., (1989). AMS-14C ages measured in deep-sea cores from the Southern Ocean: Implications for sedimentation rates during Isotope Stage 2 Quaternary Research 31, 309–317 CrossRefGoogle Scholar

Bareille, G. Labracherie, M. Maillet, N. Latouche, C., (1990). Quantification des teneurs en opale biogène des sédiments de l'Océan Austral par diffractométrie X Clay Minerals 25, 363–373 CrossRefGoogle Scholar

Bareille, G. Labracherie, M. Maillet, Labeyrie, L. D. Pichon, J. J., and Turon, J. L. . Biogenic silica accumulation rate during the Holocene in the Southeastern Indian Ocean. .CrossRefGoogle Scholar

Bunt, J.S. Wood, E.J.F., (1963). Microalgae and Antarctic sea-ice Nature (London) 199, 1254 CrossRefGoogle Scholar

Burckle, L.H., (1984). Diatom distribution and paleoceanographic reconstruction in the Southern Ocean—Present and last glacial maximum Marine Micropaleontology 9, 241–262 CrossRefGoogle Scholar

Burckle, L.H. Cirilli, J., (1987). Origin of diatom ooze belt in the Southern Ocean: Implications for late Quaternary paleoceanography Micropaleontology 33, 82–86 CrossRefGoogle Scholar

Deacon, G.E.R., (1964). Antarctic Oceanography: The physical environment Hermann, Antarctic Biology 81–86 Google Scholar

Gordon, A.L., (1971). Oceanography of Antarctic waters Antarctic Oceanology I Reid, J. Antarctic Research Series 15 169–203 CrossRefGoogle Scholar

Hays, J.D. Shackleton, N. Irving, G., (1976). Reconstruction of the Atlantic and Western Indian Ocean Sectors of the 18,000 B.P. Antarctic Ocean Cline, R.M. Hays, J.D. Investigation of Late Quaternary Paleoceanography and Paleoclimatology Geological Society of America, Memoir 145 337–372 Boulder, CO CrossRefGoogle Scholar

Hellmer, H. Bersch, M. Augstein, E. Grabemann, I., (1985). The Southern Ocean: A survey of oceanographic and marine meteorological research work Ber Polarforshung 26,Google Scholar

Imbrie, J. Kipp, N.G., (1971). A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core Turekian, K. Late Cenozoic Glacial Ages Yale Univ. Press New Haven, CT 71–181 Google Scholar

Labeyrie, L.D. Pichon, J.J. Labracherie, M. Ippolito, P. Duprat, J. Duplessy, J.C., (1986). Melting history of Antarctica during the past 60,000 years Nature (London) 322, 701–706 CrossRefGoogle Scholar

Labracherie, M. Labeyrie, L.D. Duprat, J. Bard, E. Arnold, M. Pichon, J.J. Duplessy, J.C., (1989). The last deglaciation in the Southern Ocean Paleoceanography 4, 629–638 CrossRefGoogle Scholar

Lapaquellerie, Y., (1987). Utilisation de la diffractométrie X pour la détermination des constituants amorphes dans les sédiments marins (silice biogène et cendres volcaniques) Clay Minerals 22, 457–463 CrossRefGoogle Scholar

Lutjeharms, J.R.E., (1985). Location of frontal systems between Africa and Antarctica: Some preliminary results Deep-Sea Research 32, 329–341 CrossRefGoogle Scholar

Mikkelsen, N., (1980). Experimental dissolution of Pliocene diatoms Nova Hedwigia 64, 893 Google Scholar

Mullin, J.B. Riley, J.P., (1955). The colorimetric determination of silicate with special reference to sea and natural waters Analytica Chimica Acta 12, 162–176 CrossRefGoogle Scholar

Pichon, J.J., (1985). Les diatomées traceurs de l'évolution climatique et hydrologique de l'Océan Austral au cours du Dernier Cycle Climatique, Talence Unpublished Ph.D. dissertation Université de Bordeaux I Google Scholar

Pichon, J.J. Labracherie, M. Labeyrie, L.D. Duprat, J., (1987). Transfer functions between diatom assemblages and surface hydrology in the Southern Ocean Palaeogeography, Palaeoclimatology, Palaeoecology 61, 79–95 CrossRefGoogle Scholar

Pichon, J. J. Labeyrie, L. D. Bareille, G. Labracherie, M. Duprat, J., and Jouzel, J. . Surface water temperature changes in the high latitudes of the Southern Hemisphere over the last glacial-interglacial cycle. .CrossRefGoogle Scholar

Schrader, H.J., (1974). Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments 3rd Symposium on Recent and Fossil Marine Diatoms Simonsen, R. Nova Hedwigia 45, 403–409 Google Scholar

Shemesh, A. Burckle, L.H. Froelich, P.N., (1989). Dissolution and preservation of antarctic diatoms and the effect on sediment thanatocoenoses Quaternary Research 31, 288–308 CrossRefGoogle Scholar

Sverdrup, H.U. Johnson, M.W. Fleming, R.H., (1942). The Oceans: Their physics, chemistry and biology Prentice-Hall Englewood, NJ Google Scholar

Van Bennekom, A.J. Berger, G.W. van Der Gaast, S.J. De Vries, R.T.P., (1988). Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector) Palaeogeography, Palaeoclimatology, Palaeoecology 67, 19–30 CrossRefGoogle Scholar

Williams, D.F. Healy-Williams, N. Leschak, P., (1985). Dissolution and water-mass patterns in the Southeast Indian Ocean, Part I: Evidence from Recent to Late Holocene foraminiferal assemblages Geological Society of America Bulletin 96, 176–189 2.0.CO;2>CrossRefGoogle Scholar