Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus | Parasitology | Cambridge Core (original) (raw)

Summary

Samples of DNA from a panel of Giardia isolated from humans and animals in Europe and shown previously to consist of 2 major genotypes–‘Polish’ and ‘Belgian’–have been compared with human-derived Australian isolates chosen to represent distinct genotypes (genetic groups I–IV) defined previously by allozymic analysis. Homologous 0·52 kilobase (kb) segments of 2 trophozoite surface protein genes (tsa417 and tsp11, both present in isolates belonging to genetic groups I and II) and a 1·2 kb segment of the glutamate dehydrogenase (gdh) gene were amplified by the polymerase chain reaction (PCR) and examined for restriction fragment length polymorphisms (RFLPs). Of 21 ‘Polish’ isolates that were tested, all yielded tsa417-like and tsp11-like PCR products that are characteristic of genetic groups I or II (15 and 6 isolates respectively) in a distinct assemblage of G. intestinalis from Australia (Assemblage A). Conversely, most of the 19 ‘Belgian’ isolates resembled a second assemblage of genotypes defined in Australia (Assemblage B) which contains genetic groups III and IV. RFLP analysis of gdh amplification products showed also that ‘Polish’ isolates-were equivalent to Australian Assemblage A isolates (this analysis does not distinguish between genetic groups I and II) and that ‘Belgian’ isolates were equivalent to Australian Assemblage B isolates. Comparison of nucleotide sequences determined for a 690 base-pair portion of the gdh PCR products revealed ≥ 99·0% identity between group I and group II (Assemblage A/‘Polish’) genotypes, 88·3–89·7% identity between Assemblage A and Assemblage B genotypes, and ≥ 98·4% identity between various Assemblage B/‘Belgian’ genotypes. The results confirm that the G. duodenalis isolates examined in this study (inclusive of G. intestinalis from humans) can be divided into 2 major genetic clusters: Assemblage A (= ‘Polish’ genotype) containing allozymically defined groups I and II, and Assemblage B (= ‘Belgian’ genotype) containing allozymically defined groups III and IV and other related genotypes.

References

Andrews, R. H., Adams, M., Boreham, P. F. L., Mayrhofer, G. & Meloni, B. P. (1989). Giardia intestinalis: electrophoretic evidence for a species complex. International Journal for Parasitology 19, 183–90.CrossRefGoogle ScholarPubMed

Andrews, R. H., Chilton, N. B. & Mayrhofer, G. (1992). Selection of specific Giardia intestinalis by different growth conditions. Parasitology 105, 375–86.CrossRefGoogle Scholar

Benachenhou-Lahfa, N., Forterre, P. & Labedan, B. (1993). Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the Archaebacteria in the Universal Tree of Life. Journal of Molecular Evolution 36, 335–46.CrossRefGoogle ScholarPubMed

Berbee, M. L. & Taylor, J. W. (1992). Two Ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Molecular Biology and Evolution 9, 278–84.Google ScholarPubMed

Bhatia, V. N. & Warhurst, D. C. (1981). Hatching and subsequent cultivation of cysts of Giardia intestinalis in Diamond's medium. Journal of Tropical Medicine and Hygiene 84, 45–7.Google Scholar

Campbell, S. R., Van Keulen, H., Erlandsen, S. L., Senturia, J. B. & Jarroll, E. L. (1990). Giardia sp.: comparison of electrophoretic karyotypes. Experimental Parasitology 71, 470–82.CrossRefGoogle ScholarPubMed

Carnaby, S., Katelaris, P. H., Naeem, A. & Farthing, M. J. G. (1994). Genotypic heterogeneity within Giardia lamblia isolates demonstrated by Ml 3 DNA fingerprinting. Infection and Immunity 62, 1875–80.Google Scholar

De Jonckheere, J. F. & Gordts, B. (1987). Occurrence and transfection of a Giardia virus. Molecular and Biochemical Parasitology 23, 85–9.CrossRefGoogle ScholarPubMed

De Jonckheere, J. F., Majewska, A. C. & Kasprzak, W. (1990). Giardia isolates from primates and rodents display the same polymorphisms as human isolates. Molecular and Biochemical Parasitology 39, 23–9.CrossRefGoogle ScholarPubMed

Ey, P. L., Andrews, R. H. & Mayrhofer, G. (1993 a). Differentiation of major genotypes of Giardia intestinalis by polymerase chain reaction analysis of a gene encoding a trophozoite surface antigen. Parasitology 106, 347–56.CrossRefGoogle ScholarPubMed

Ey, P. L., Darby, J. M., Andrews, R. H. & Mayrhofer, G. (1993 b). Giardia intestinalis: detection of major genotypes by restriction analysis of gene amplification products. International Journal for Parasitology 23, 591–600.CrossRefGoogle ScholarPubMed

Ey, P. L., Khanna, K., Andrews, R. H., Manning, P. A. & Mayrhofer, G. (1992). Distinct genetic groups of Giardia intestinalis distinguished by restriction fragment length polymorphisms. Journal of General Microbiology 138, 2629–37.CrossRefGoogle ScholarPubMed

Ey, p. L. & Mayrhofer, G. (1993). Two genes encoding homologous 70 kDa surface proteins are present within individual trophozoites of the binucleate protozoan parasite Giardia intestinalis. Gene 129, 257–62.CrossRefGoogle ScholarPubMed

Filice, F. P. (1952). Studies on the cytology and life history of a giardia from the laboratory rat. University of California Publications in Zoology 57, 53–146.Google Scholar

Fortess, E. & Meyer, E. A. (1976). Isolation and axenic cultivation of Giardia trophozoites from the guinea pig. Journal of Parasitology 62, 689.CrossRefGoogle ScholarPubMed

Gordts, B., Retoré, P., Cadranel, S., Hemelhof, W., Rahman, M. & Butzler, J.-P. (1984). Routine culture of Giardia lamblia trophozoites from human duodenal aspirates. Lancet ii, 137–8.CrossRefGoogle Scholar

Hall, M. L., Costa, N. D., Thompson, R. C. A., Lymbery, A. J., Meloni, B. P. & Wales, R. G. (1992). Genetic variants of Giardia duodenalis differ in their metabolism. Parasitology Research 78, 712–14.CrossRefGoogle ScholarPubMed

Higgins, D. G., Bleasby, A. J. & Fuchs, R. (1992). CLUSTAL V: improved software for multiple sequence alignment. Computing in the Applied Biosciences 8, 189–91.Google ScholarPubMed

Homan, W. L., Van Enckevort, F. H. J., Limper, L., Van Eys, G. J. J. M., Schoone, G. J., Kasprzak, W., Majewska, A. C. & Van Knapen, F. (1992). Comparison of Giardia isolates from different laboratories by isoenzyme analysis and DNA probes. Parasitology Research 78, 316–23.CrossRefGoogle ScholarPubMed

Kasprzak, W., Winiecka, J. & Majewska, A. C. (1987). Antigenic differences among Giardia isolates from one geographic area. Acta Protozoologica 26, 309–14.Google Scholar

Kendrick, B. (1985). The Fifth Kingdom. Ontario: Mycologue Publications.Google Scholar

Korman, S. H., Le Blancq, S. M., Spira, D. T., El On, J., Reifen, R. M. & Deckelbaum, R. J. (1986). Giardia lamblia: identification of different strains from man. Zeitschrift für Parasitenkunde 72, 173–80.CrossRefGoogle ScholarPubMed

Korman, S. H., Le Blancq, S. M., Deckelbaum, R. J. & Van Der Ploeg, L. H. (1992). Investigation of human giardiasis by karyotype analysis. Journal of Clinical Investigation 89, 1725–33.CrossRefGoogle ScholarPubMed

Kumar, S., Tamura, K. & Nei, M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, Version 1.0. University Park, PA, USA: The Pennsylvania State University.Google Scholar

Majewska, A. C. & Kasprzak, W. (1990). Axenic Giardia isolates from primates and rodents. Veterinary Parasitology 35, 169–74.CrossRefGoogle ScholarPubMed

Mayrhofer, G., Andrews, R. H., Ey, P. L., Albert, M. J., Grimmond, T. R. & Merry, D. J. (1992). The use of suckling mice to isolate and grow Giardia from mammalian faecal specimens for genetic analysis. Parasitology 105, 255–63.CrossRefGoogle ScholarPubMed

Mayrhofer, G., Andrews, R. H., Ey, P. L. & Chilton, N. B. (1995). Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris. Parasitology 111, 11–17.CrossRefGoogle ScholarPubMed

Meloni, B. P., Lymbery, A. J. & Thompson, R. C. A. (1988). Isoenzyme electrophoresis of 30 isolates of Giardia from humans and felines. American Journal of Tropical Medicine and Hygiene 38, 65–73.CrossRefGoogle ScholarPubMed

Meloni, B. P., Lymbery, A. J. & Thompson, R. C. A. (1989). Characterization of Giardia isolates using a non-radiolabelled DNA probe and correlation with the results of isoenzyme analysis. American Journal of Tropical Medicine and Hygiene 40, 629–37.CrossRefGoogle Scholar

Miller, R. L., Wang, A. L. & Wang, C. C. (1988). Identification of Giardia lamblia isolates susceptible and resistant to infection by the double-stranded RNA virus. Experimental Parasitology 66, 118–23.CrossRefGoogle ScholarPubMed

Morgan, U. M., Constantine, C. C., Greene, W. K. & Thompson, R. C. A. (1993). RAPD (random amplified polymorphic DNA) analysis of Giardia DNA and correlation with isoenzyme data. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 702–5.CrossRefGoogle ScholarPubMed

Mowatt, M. R., Howard, T. C. & Nash, T. E. (1993). Divergence of triosephosphate isomerase gene and protein sequences between independent Giardia lamblia isolates. (GenBank database, Accession number L02116; unpublished).Google Scholar

Mowatt, M. R., Weinbach, E. C., Howard, T. C. & Nash, T. C. (1994). Complementation of an Escherichia coli glycolysis mutant by Giardia lamblia triosephosphate isomerase. Experimental Parasitology 78, 85–92.CrossRefGoogle ScholarPubMed

Murtagh, J. J., Mowatt, M. R., Lee, C.-M., Scott, F.-J., Mishima, K., Nash, T. E., Moss, J. & Vaughan, M. (1992). Guanine nucleotide-binding proteins in the intestinal parasite Giardia lamblia. Journal of Biological Chemistry 267, 9654–62.CrossRefGoogle ScholarPubMed

Nash, T. E. & Keister, D. B. (1985). Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. Journal of Infectious Diseases 152, 1166–71.CrossRefGoogle Scholar

Nash, T. E., McCutchan, T., Keister, D., Dame, J. B., Conrad, J. D. & Gillin, F. D. (1985). Restriction-endonuclease analysis of DNA from 15 Giardia isolates obtained from humans and animals. Journal of Infectious Diseases 152, 64–73.CrossRefGoogle ScholarPubMed

Nash, T. E. & Mowatt, M. R. (1992). Identification and characterization of a Giardia lamblia group-specific gene. Experimental Parasitology 75, 369–78.CrossRefGoogle ScholarPubMed

Proctor, E. M., Isaac-Renton, J. L., Boyd, J., Wong, Q. & Bowie, w. R. (1989). Isoenzyme analysis of human and animal isolates of Giardia duodenalis from British Columbia, Canada. American Journal of Tropical Medicine and Hygiene 41, 411–15.CrossRefGoogle ScholarPubMed

Safaris, K. & Isaac-Renton, J. L. (1993). Pulsed-field gel electrophoresis as a method of biotyping of Giardia duodenalis. American Journal of Tropical Medicine and Hygiene 48, 134–44.Google Scholar

Sepp, T., Wang, A. L. & Wang, C. C. (1994). Giardia virus-resistant Giardia lamblia lacks a virus receptor on the cell membrane surface. Journal of Virology 68, 1426–31.CrossRefGoogle Scholar

Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.Google Scholar

Upcroft, J. A., Boreham, P. F. L. & Upcroft, P. (1989). Geographic variation in Giardia karyotypes. International Journal for Parasitology 19, 519–28.CrossRefGoogle ScholarPubMed

Upcroft, P., Mitchell, R. & Boreham, P. F. L. (1990). DNA fingerprinting of the intestinal parasite Giardia duodenalis with the M13 phage genome. International Journal for Parasitology 20, 319–23.CrossRefGoogle ScholarPubMed

Upcroft, J. A. & Upcroft, P. (1994). Two distinct varieties of Giardia in a mixed infection from a single patient. Journal of Eukaryotic Microbiology 41, 189–94.CrossRefGoogle Scholar

Van Belkum, A., Homan, W., Limper, L. & Quint, W. G. V. (1993). Genotyping isolates and clones of Giardia duodenalis by polymerase chain reaction: implications for the detection of genetic variation among protozoan parasite species. Molecular and Biochemical Parasitology 61, 69–78.Google Scholar

Van Keulen, H., Gutell, R. R., Gates, M. A., Campbell, S. R., Erlandsen, S. L., Jarroll, E. L., Kulda, J. & Meyer, E. A. (1993). Unique phylogenetic position of Diplomonidida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp. Journal of the Federation of American Societies for Experimental Biology 7, 223–31.CrossRefGoogle ScholarPubMed

Weiss, J. B., Van Keulen, H. & Nash, T. E. (1992). Classification of subgroups of Giardia lamblia based upon ribosomal RNA gene sequence using the polymerase chain reaction. Molecular and Biochemical Parasitology 54, 73–86.CrossRefGoogle ScholarPubMed

Yee, J. & Dennis, P. P. (1992). Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. Journal of Biological Chemistry 267, 7539–44.CrossRefGoogle ScholarPubMed