The anti-schistosomal drug praziquantel is an adenosine antagonist | Parasitology | Cambridge Core (original) (raw)

Summary

The mechanism of action of praziquantel (PZQ), the drug of choice against schistosomiasis, is still unclear. Since exposure of schistosomes to the drug is associated with calcium influx and muscular contraction, calcium channels have been suggested as the target, although direct combination of PZQ with their subunits was never demonstrated. We report a hitherto unknown effect of PZQ, namely the inhibition of nucleoside uptake, as observed in living worms using radio-isotope labelled adenosine and uridine. This effect is clearly seen in schistosomes but is absent in mammalian cells in culture. Moreover it is a specific pharmacological effect seen exclusively with the active levo-R(−)stereo isomer of the drug, and is shared by at least one benzodiazepine having antischistosomal activity. This novel effect acquires significance given that schistosomes cannot synthesize purine nucleosides de novo. A possible relationship between this novel effect and the known action of PZQ on calcium channels is discussed, since adenosine is known to bind to specific receptors and to behave as an indirect antagonist of calcium release in mammalian cells. If calcium channels were correlated with adenosine receptors also in schistosomes, as they are in mammals, this would support the hypothesis that PZQ-induced calcium influx may be correlated to adenosine receptor blockade.

References

Bennett, J. L. (1980). Characteristics of antischistosomal benzodiazepine binding sites in Schistosoma mansoni. Journal of Parasitology 66, 742–747.CrossRefGoogle ScholarPubMed

Cioli, D., Pica-Mattoccia, L. and Archer, S. (1995). Antischistosomal drugs: past, present … and future? Pharmacology and Therapeutics 68, 35–85.CrossRefGoogle ScholarPubMed

Gardner, D. R. and Brezden, B. L. (1984). The sites of action of praziquantel in a smooth muscle of Lymnaea stagnalis. Canadian Journal of Physiology and Pharmacology 62, 282–287.CrossRefGoogle Scholar

Greenberg, R. M. (2005). Are Ca2+ channels targets of praziquantel action? International Journal for Parasitology 35, 1–9.CrossRefGoogle ScholarPubMed

Frischknecht, R. and Ferrero, J. D. (1985). Adenosine increases an internal calcium store in the smooth muscle of guinea-pig Taenia coli. European Journal of Pharmacology 110, 109–112.CrossRefGoogle ScholarPubMed

Gonnert, R. and Andrews, P. (1977). Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkunde 52, 129–150.CrossRefGoogle Scholar

Hu, P. S., Lindgren, E., Jacobson, K. A. and Fredholm, B. B. (1987). Interaction of dihydropyridine calcium channel agonists and antagonists with adenosine receptors. Pharmacology and Toxicology 61, 121–125.CrossRefGoogle ScholarPubMed

Jacobson, K. A. and Gao, Z. (2006). Adenosine receptors as therapeutic targets. Nature Reviews Drug Discovery 5, 247–264.CrossRefGoogle ScholarPubMed

Jaffe, J. J., Meymarian, E. and Doremus, H. M. (1971). Antischistosomal action of tubercidin administered after absorption into red cells. Nature, London 230, 408–409.CrossRefGoogle ScholarPubMed

Jeziorski, M. C. and Greenberg, R. M. (2006). Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. International Journal for Parasitology 36, 625–632.CrossRefGoogle ScholarPubMed

Kohn, A. B., Roberts-Misterly, J. M., Anderson, P. A., Khan, N. and Greenberg, R. M. (2003). Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel beta subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel. Parasitology 127, 349–356.CrossRefGoogle Scholar

Levy, M. G. and Read, P. C. (1975). Purine and pyrimidine transport in Schistosoma mansoni. Journal of Parasitology 61, 627–632.CrossRefGoogle ScholarPubMed

Listos, J., Malec, D. and Fidecka, S. (2005). Influence of adenosine receptor agonists on benzodiazepine withdrawal signs in mice. European Journal of Pharmacology 523, 71–78.CrossRefGoogle ScholarPubMed

Oliveira, L., Timoteo, M. A. and Correia-de-Sa, P. (2004). Tetanic depression is overcome by tonic adenosine A(2A) receptor facilitation of L-type Ca(2+) influx into rat motor nerve terminals. Journal of Physiology 560, 157–168.CrossRefGoogle ScholarPubMed

Pica-Mattoccia, L. and Cioli, D. (2004). Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. International Journal for Parasitology 34, 527–533.CrossRefGoogle ScholarPubMed

Pica-Mattoccia, L., Valle, C., Basso, A., Troiani, A. R., Vigorosi, F., Liberti, P., Festucci, A. and Cioli, D. (2007). Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Experimenal Parasitology 115, 344–351.CrossRefGoogle ScholarPubMed

Ralevic, V. and Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacological Reviews 50, 415–479.Google ScholarPubMed

Redman, C. A., Robertson, A., Fallon, P. G., Modha, J., Kusel, J. R., Doenhoff, M. J. and Martin, R. J. (1996). Praziquantel: an urgent and exciting challenge. Parasitology Today 12, 14–20.CrossRefGoogle ScholarPubMed

Rowlett, J. K., Rowlett, J. K., Platt, D. M., Lelas, S., Atack, J. R. and Dawson, G. R. (2005). Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proceedings of the National Academy of Sciences, USA 102, 915–920.CrossRefGoogle ScholarPubMed

Schaufele, P., Schumacher, P., Acevedo, C. G. and Contreras, E. (1995). Diazepam, adenosine analogues and calcium channel antagonists inhibit the contractile activity of the mouse urinary bladder. Archives of International Pharmacodynamics and Therapeutics 329, 454–466.Google ScholarPubMed

Seubert, C. N., Morey, T. E., Martynyuk, A. E., Cucchiara, R. F. and Dennis, M. D. (2000). Midazolam selectively potentiates the A2A-adenosine but not A1-receptor-mediated effects of adenosine. Anesthesiology 92, 567–577.CrossRefGoogle Scholar

Stone, T. W. (1999). Actions of benzodiazepines and the benzodiazepine antagonist flumazenil may involve adenosine. Journal of Neurological Sciences 163, 199–200.Google ScholarPubMed

Suchail, S., Sarciron, M. E. and Petavy, A. F. (1998). Purine metabolism in Echinococcus multilocularis. Comparative Biochemistry and Physiology, B 120, 633–637.CrossRefGoogle ScholarPubMed

Swanson, T. H. and Green, C. L. (1986). Nifedipine: more than a calcium channel blocker. General Pharmacology 17, 255–260.CrossRefGoogle ScholarPubMed

Van Rhee, A. M., Jiang, J. L., Melman, N., Olah, M. E., Stiles, G. L. and Jacobson, K. A. (1996). Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A3 receptors. Journal of Medicinal Chemistry 39, 2980–2989.CrossRefGoogle ScholarPubMed

Wong, P. C. and Ko, R. C. (1979). De novo purine ribonucleotide biosynthesis in adult Angiostrongylus cantonensis (Nematoda: Metastrongyloidea). Comparative Biochemistry and Physiology, B 62, 129–132.CrossRefGoogle ScholarPubMed

Wong, P. C. and Yeung, S. B. (1981). Pathways of purine ribonucleotide biosynthesis in the adult worm Metastrongylus apri (Nematoda: Metastrongyloidea) from pig lung. Molecular and Biochemical Parasitology 2, 285–293.CrossRefGoogle ScholarPubMed

Zapata, R., Navarro, A., Canela, E. I., Franco, R., Lluis, C. and Mallol, J. (1997). Regulation of L-type calcium channels in GH4 cells via A1 adenosine receptors. Journal of Neurochemistry 69, 2546–2554.CrossRefGoogle ScholarPubMed