Contrast adaptation and excitatory amino acid receptors in cat striate cortex | Visual Neuroscience | Cambridge Core (original) (raw)

Abstract

We have employed two paradigms to investigate the mechanisms of contrast gain control in cat striate cortex. In the first paradigm, optimal drifting gratings were presented in three consecutive periods. The contrast was near threshold in the first and third periods and accompanied by iontophoretic pulses of glutamate or glutamate receptor (GluR) agonists. The contrast was set to evoke a higher firing rate in the second period. Although both visual and iontophoretic conditions were identical in the first and third periods, responses to glutamate, N-methyl-D-aspartic acid (NMDA), and (1S, 3R)-1-Aminocyclopentane-1, 3-dicarboxylic acid (ACPD) were reduced following the adapting interval. (S)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses were not reduced. Administration of ionotropic GluR antagonists did not affect adaptation to the high-contrast grating. The metabotropic GluR antagonist (±)-α-Methyl-4-carboxyphenylglycine (MCPG), which acts at presynaptic glutamate autoreceptors, decreased the degree of adaptation exhibited by striate cells. In a second paradigm, contrast response functions (CRFs) were obtained at various adapting contrasts and least-squares fits to a hyperbolic ratio equation generated for each adapting level. Similar to previous reports, DL-2-amino-5-phosphonovaleric acid (APV) reduced the slope of the CRF and increased the responsiveness of the cells but did not affect the semisaturation constant, σ, or the exponent of the CRF, n. Only MCPG significantly altered the distribution of σ and n for 19 cells. The effect on α suggests that this drug can interfere with the cell's ability to shift its operating point to match the adapting contrast. These results suggest the involvement of a presynaptic mechanism for contrast adaptation. The decrease in neuronal responsiveness immediately following the high-contrast period may reflect an additional, postsynaptic effect in which there is a decrease in the NMDA-mediated component of the visual response.

References

Albrecht, D.G., Parrar, S.B. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. Journal of Physiology 347, 713–739.CrossRefGoogle ScholarPubMed

Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast-response function of simple cells in visual cortex. Visual Neuroscience 7, 531–546.CrossRefGoogle ScholarPubMed

Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217–237.CrossRefGoogle ScholarPubMed

Aniksztejn, L., Bregestovski, P. & Ben-Ari, Y. (1991). Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. European Journal of Pharmacology 205, 327–328.CrossRefGoogle Scholar

Artola, A., Brocher, S. & Singer, W. (1990). Different voltagedependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72.CrossRefGoogle ScholarPubMed

Artola, A. & Singer, W. (1987). Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652.CrossRefGoogle ScholarPubMed

Baskys, A. & Malenka, R.C. (1991). Agonists at metabotropic glutamate receptors presynaptically inhibit EPSPs in neonatal rat hippocampus. Journal of Physiology 444, 687–701.CrossRefGoogle Scholar

Birse, E.F., Eaton, S.A., Jane, D.E., Jones, P.L.St.J., Porter, R.H.P., Pook, P.C.-K., Sunter, D.C., Udvarhelyi, P.M., Wharton, B., Roberts, P.J., Salt, T.E. & Watkins, J.C. (1993). Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropicglutamate receptors in the central nervous system. Neuroscience 52, 481–488.CrossRefGoogle Scholar

Blakemore, C. & Campbell, F.W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology (London) 203, 237–260.CrossRefGoogle Scholar

Blakemore, C., Muncey, J.P.J. & Ridley, R.M. (1973). Stimulus specificity in the human visual system. Vision Research 13, 1915–1931.CrossRefGoogle ScholarPubMed

Bleakman, D., Rusin, C., Chard, P., Glarm, S.R. & Miller, R. (1992). Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Molecular Pharmacology 42, 192–196.Google ScholarPubMed

Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience 6, 239–255.CrossRefGoogle ScholarPubMed

Bonds, A.B. (1993). The encoding of cortical contrast gain control. In Contrast Sensitivity, ed. Shapley, R. & Lam, D.M.-K., pp. 215–230. Cambridge, Massachusetts: MIT Press.Google Scholar

Burke, J.P. & Hablitz, J.J. (1994). Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex. Journal of Neuroscience 14, 5120–5130.CrossRefGoogle ScholarPubMed

Bushell, T.J., Jane, D.E., Tse, H.-W., Watkins, J.C., Davies, C.H., Garthwaite, J. & Collingridge, G.L. (1995). Antagonism of the synaptic depressant actions of L-APH in the lateral perforant path by MAPH. Neuropharmacology 34, 239–241.CrossRefGoogle Scholar

Crepel, F., Daniel, H., Hemart, N. & Jaillard, D. (1991). Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Experimental Brain Research 86, 402–406.CrossRefGoogle ScholarPubMed

DeBruyn, F.J. & Bonds, A.B. (1986). Contrast adaptation in cat visual cortex is not mediated by GABA. Brain Research 383, 339–342.CrossRefGoogle Scholar

DeBusk, B.C., Bonds, A.B. & DeBruyn, E.J. (1992). Spike clustering in cat cortical cells supports independent coding of spatial and contrast information. Investigative Ophthalmology and Visual Science (Suppl.) 33, 1255.Google Scholar

Eaton, S.A., Jane, D.E., Jones, P.L.St.J., Porter, R.H.P., Pook, P.C.-K., Sunter, D.C., Udvarhelyi, P.M., Roberts, P.J., Salt, T.E. & Watkins, J.C. (1993). Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxy-phenylglycine and (RS)-α-methyl-4-carboxyphenylglycine. European Journal of Pharmacology 244, 195–197.CrossRefGoogle Scholar

Finlayson, P.G. & Cynader, M.S. (1995). Synaptic depression in visual cortical tissue slices: An in vitro model for cortical neuron adaptation. Experimental Brain Research 106, 145–155.CrossRefGoogle Scholar

Fox, K., Sato, H. & Daw, N. (1989). The location and function of NMDA receptors in cat and kitten visual cortex. Journal of Neuroscience 9, 2443–2454.CrossRefGoogle Scholar

Fox, K., Sato, H. & Daw, N. (1990). The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. Journal of Neurophysiology 64, 1413–1428.CrossRefGoogle ScholarPubMed

Geisler, W.S. & Albrecht, D.G. (1992). Cortical neurons: Isolation of contrast gain control. Vision Research 32, 1409–1410.CrossRefGoogle ScholarPubMed

Glaum, S.R. & Miller, R.J. (1993 a). Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus tractus solitarius. Journal of Neuroscience 13, 1636–1641.CrossRefGoogle Scholar

Glaum, S.R. & Miller, R.J. (1993 b). Metabotropic glutamate receptors depress afferent excitatory transmission in the rat tractus solitarii. Journal of Neurophysiology 70, 2669–2672.CrossRefGoogle ScholarPubMed

Glaum, S.R. & Miller, R.J. (1994). Acute regulation of synaptic transmission by metabotropic glutamate receptors. In The Metabotropic Glutamate Receptors, ed. Conn, P.J. & Patel, J., pp. 147–172. Totowa, New Jersey: Humana Press.CrossRefGoogle Scholar

Greenlee, M.W., Georgeson, M.A., Magnussen, S. & Harris, J.P. (1991). The time course of adaptation to spatial contrast. Vision Research 31, 223–236.CrossRefGoogle ScholarPubMed

Hagihara, H., Tsumoto, T., Sato, H. & Hata, Y. (1988). Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex. Experimental Brain Research 69, 407–416.CrossRefGoogle ScholarPubMed

Harris, E.W. & Cotman, C.W. (1983). Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path. Experimental Brain Research 52, 455–460.CrossRefGoogle ScholarPubMed

Hebb, D.O. (1949). The Organization of behavior. New York: Wiley.Google Scholar

Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106–154.CrossRefGoogle ScholarPubMed

Jane, D.E., Jones, P.L.St.J., Pook, P.C.-K., Tse, H.W. & Watkins, J.C. (1994). Actions of two new antagonists showing selectivity for different sub-types of metabotropic glutamate receptor in the neonatal rat spinal cord. British Journal of Pharmacology 112, 809–816.CrossRefGoogle ScholarPubMed

Jones, J.P. & Palmer, L.A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1187–1211.CrossRefGoogle ScholarPubMed

Jones, J.P., Stepnoski, R.A. & Palmer, L.A. (1987). The two-dimensional spectral structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1212–1232.CrossRefGoogle ScholarPubMed

Kasamatsu, T. & Heggelund, P. (1982). Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrena-line. Experimental Brain Research.CrossRefGoogle Scholar

Kemp, M., Roberts, P., Pook, P., Jane, D., Jones, A., Jones, P., Sunter, D., Udvarhelyi, P. & Watkins, J. (1994). Antagonism of presynaptically mediated depressant responses and cyclic AMP-coupled metabotropic glutamate receptors. European Journal of Pharmacology 266, 187–192.CrossRefGoogle ScholarPubMed

Kirkwood, A. & Bear, M.F. (1994 b). Homosynaptic long-term depression in the visual cortex. Journal of Neuroscience 14, 3404–3412.CrossRefGoogle ScholarPubMed

Lovinger, D.M. (1991). Trans-l-amino-l, 3-dicarboxylicacid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neuroscience Letters 129, 17–21.CrossRefGoogle ScholarPubMed

Lovinger, D.M. & McCool, B.A. (1995). Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mG1uR2 or 3. Journal of Neurophysiology 73, 1076–1083.CrossRefGoogle ScholarPubMed

Maddess, T., McCourt, M.E., Blakeslee, B. & Cunningham, R.B. (1988). Factors governing the adaptation of cells in area 17 of the cat visual cortex. Biological Cybernetics 59, 229–236.CrossRefGoogle ScholarPubMed

Maffei, L., Fiorentini, A. & Bisti, S. (1973). Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038.CrossRefGoogle ScholarPubMed

Marlin, S., Douglas, R. & Cynader, M.S. (1991). Position-specific adaptation in simple cell receptive fields of the cat striate cortex. Journal of Neurophysiology 66, 1769–1784.CrossRefGoogle ScholarPubMed

Marlin, S., Douglas, R. & Cynader, M.S. (1993). Position-specific adaptation in complex cell receptive fields of the cat striate cortex. Journal of Neurophysiology 69, 2209–2221.CrossRefGoogle ScholarPubMed

McCormick, D.A. & Von Krosigk, M. (1992). Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proceedings of the National Academy of Sciences of the U.S.A. 89, 2774–2778.CrossRefGoogle ScholarPubMed

McCormick, D.A., Wang, Z. & Hugenard, J. (1993). Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex 3, 387–398.CrossRefGoogle ScholarPubMed

McLean, J. & Palmer, L.A. (1992). Contrast adaptation and excitatory amino acid (EAA) receptors in striate cortex. Investigative Ophthalmology and Visual Science (Suppl.) 33, 1021.Google Scholar

McLean, J., Raab, S. & Palmer, L.A. (1994). Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat. Visual Neuroscience 11, 271–294.CrossRefGoogle Scholar

McLean, J. & Waterhouse, B.D. (1994). Noradrenergic modulation of cat area 17 neuronal responses to moving visual stimuli. Brain Research 667, 83–97.CrossRefGoogle ScholarPubMed

Miller, K.D., Chapman, B. & Stryker, M.P. (1989). Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. Proceedings of the National Academy of Sciences of the U.S.A. 86, 5183–5187.CrossRefGoogle ScholarPubMed

Movshon, J.A. & Lennie, P. (1979). Pattern-selective adaptation in visual cortical neurons. Nature 278, 850–852.CrossRefGoogle Scholar

Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N. & Nakanishi, S. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mG1uR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. Journal of Biological Chemistry 268, 868–873.CrossRefGoogle ScholarPubMed

Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated conductances in retinal bipolar cells. Nature 346, 269–271.CrossRefGoogle ScholarPubMed

Nelson, S.B. (1991). Temporal interactions in the cat visual system I. Orientation selective suppression in the visual cortex. Journal of Neuroscience 11, 344–356.CrossRefGoogle Scholar

Nicoll, R.A., Malenka, R.C. & Kauer, J.A. (1990). Functional comparison of neurotransmitter sub-types in mammalian central nervous system. Physiological Reviews 70, 513–565.CrossRefGoogle Scholar

Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat's visual system. Journal of Neurophysiology 54, 651–667.CrossRefGoogle ScholarPubMed

Robson, J.G. (1991). Neuronal coding of contrast in the visual system. Optical Society of America, Technical Digest Series 17, 152.Google Scholar

Salt, T.E. & Eaton, S.A. (1995). Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on GABAergic terminals: Pharmacological evidence using novel alpha-methyl derivative mG1uR antagonists, MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65, 5–13.CrossRefGoogle ScholarPubMed

Saul, A.B. (1995). Adaptation aftereffects in single neurons of cat visual cortex: Response timing is retarded by adapting. Visual Neuroscience 12, 191–205.CrossRefGoogle ScholarPubMed

Saul, A.B. & Cynader, M.S. (1989 a). Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain. Visual Neuroscience 2, 593–607.CrossRefGoogle ScholarPubMed

Saul, A.B. & Cynader, M.S. (1989 b). Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain. Visual Neuroscience 2, 609–620.CrossRefGoogle ScholarPubMed

Sclar, G., Ohzawa, I. & Freeman, R.D. (1985). Contrast gain control in the kitten's visual system. Journal of Neurophysiology 54, 668–675.CrossRefGoogle ScholarPubMed

Shiells, R.A. & Falk, G. (1992). Properties of the cGMP-activated channel of the retinal on-bipolar cells. Proceedings of the Royal Society (London) 247, 21–25.Google ScholarPubMed

Skottun, B.C., DeValois, R.L., Grosof, D.H., Movshon, J.A., Albrecht, D.G. & Bonds, A.B. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research 31, 1079–1086.CrossRefGoogle ScholarPubMed

Tsumoto, T., Hagihara, K., Sato, H. & Hata, Y. (1987). NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature 327, 513–514.CrossRefGoogle ScholarPubMed

Vautin, R.G. & Berkely, M.A. (1977). Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffects. Journal of Neurophysiology 40, 1051–1065.CrossRefGoogle ScholarPubMed

Videen, T.O., Daw, N.W. & Rader, R.K. (1984). The effect of norepinephrine on visual cortical neurons in kittens and adult cats. Journal of Neuroscience 4, 1607–1617.CrossRefGoogle ScholarPubMed

Vidyasagar, T.R. (1990). Pattern adaptation in cat visual cortex is a co-operative phenomenon. Neuroscience 36, 175–179.CrossRefGoogle ScholarPubMed

Watkins, J. & Collingridge, G. (1994). Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends in Pharmacological Sciences 15, 333–342.CrossRefGoogle ScholarPubMed

Wilson, H.R. & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research 33, 1133–1149.CrossRefGoogle ScholarPubMed

Yamashita, M. & Wassle, H. (1991). Responses of rod bipolar cells from the real retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). Journal of Neuroscience 11, 2372–2382.CrossRefGoogle Scholar