Angiogenesis and ophthalmic disease (original) (raw)
Lee P, Wang CC, Adamis AP. Ocular neovascularization: An epidemiological review. Surv Ophthalmol 1998; 43: 245–69. ArticlePubMedCAS Google Scholar
Huang AJW, Watson BD, Hernandez E, Tseng SCG. Induction of conjunctival transdifferentiation on vascularized corneas by photothrombotic occlusion of corneal neovascularization. Ophthalmology 1988; 95: 228–35. PubMedCAS Google Scholar
Huang AJW, Watson BD, Hernandez E, Tseng SCG. Induction of conjunctival transdifferentiation on vascularized corneas by photothrombotic occlusion of corneal neovascularization. Ophthalmology 1988; 95: 228–35. PubMedCAS Google Scholar
Arentsen JJ. Corneal neovascularization in contact lens wearers. Int Ophthalmol Clin 1986; 26: 15–23. PubMedCAS Google Scholar
Kruse FE, Chen JJY, Tsai RJF, Tseng SCG. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Invest Ophthalmol Vis Sci 1990; 31: 1903–13. PubMedCAS Google Scholar
Klintworth GK. Corneal Angiogenesis. A Comprehensive and Critical Review, 1st edition. New York: Springer-Verlag 1990; 26. Google Scholar
Amano S, Rohan R, Kuroki M et al. Requirement for vascular endothelial growth factor in wound-and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 1998; 39: 18–22. PubMedCAS Google Scholar
Cursifen C, Hofman-Rummelt C, Kuche MNGOH. VEGF-immunoreactivity in human corneal buttons with neovascularization. ARVO abstracts. Invest Ophthalmol Vis Sci 1998; 39: S3418. Google Scholar
Michaelson IC. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal disease. Trans Ophthalmol Soc UK 1948; 68: 137–80. Google Scholar
Ashton N. Retinal vascularization in health and disease. Am J Ophthlamol 1957; 44: 7–24. CAS Google Scholar
Wise GN. Retinal neovascularization. Trans Am Ophthalmol Soc 1956; 54: 729–826. PubMedCAS Google Scholar
Nork TM, Tso MO, Duvall J, Hayreh SS. Cellular mechanisms of iris neovascularization secondary to retinal vein occlusion. Arch Ophthalmol 1989; 107: 581–6. PubMedCAS Google Scholar
Schultze RR. Rubeosis iridis. Am J Ophthalmol 1967; 63: 487–95. Google Scholar
Shima DT, Gougos A, Miller JW et al. Cloning and mRNA expression of VEGF in ischemic retinas of Maccaca fasicularis. Invest Ophthalmol Vis Sci 1996; 37: 1334–40. PubMedCAS Google Scholar
Miller J, Adamis AP, Shima DT et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994; 145: 574–84. PubMedCAS Google Scholar
Adamis AP, Shima DT, Tolentino M et al. Inhibition of VEGF prevents retinal ischemia-associated iris neovascularization in a primate. Arch Ophthalmol 1996; 114: 66–71. PubMedCAS Google Scholar
Tolentino MJ, Miller JW, Gragoudas ES et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol 1996; 114: 964–70. PubMedCAS Google Scholar
Pe'er J, Shweiki D, Itin A et al. Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 1995; 72: 638–45. PubMed Google Scholar
Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients wth diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–87. ArticlePubMedCAS Google Scholar
Pournaras CJ, Tsacopoulos M, Strommer K et al. Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiopathy in miniature pigs. Ophthalmology 1990; 97: 1329–33. PubMedCAS Google Scholar
Pournaras CJ, Miller JW, Gragoudas ES et al. Systemic hyperoxia decreases vascular endothelial growth factor gene expression in ischemic primate retina. Arch Ophthalmol 1997; 115: 1553–8. PubMedCAS Google Scholar
Imesch PD, Bindley CD, Wallow IH. Clinicopathologic correlation of intraretinal microvascular abnormalities. Retina 1997; 17: 321–9. PubMedCAS Google Scholar
Tolentino MJ, Miller JW, Gragoudas ES et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996; 103: 1820–8. PubMedCAS Google Scholar
The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: The second report of the diabetic retinopathy study findings. Ophthalmology 1978; 85: 82–92. Google Scholar
Federman JL, Boyer D, Lanning R, Breit P. An objective analysis of proliferative diabetic retinopathy before and after pars plana vitrectomy. Ophthalmology 1979; 86: 276–82. PubMedCAS Google Scholar
Schroder S, Palinski, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary non-perfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991; 139: 81–00. PubMedCAS Google Scholar
McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 1995; 147: 642–53. PubMedCAS Google Scholar
Miyamoto K, Ogura Y. Role of leukocytes in diabetic microcirculatory disturbances. Microvas Res 1997; 54: 43–8. ArticleCAS Google Scholar
Braun RD, Fisher TC, Meiselman HJ, Hatchell DL. Decreased deformability of polymorphonuclear leukocytes in diabetic cats. Microcirculation 1996; 3: 271–8. PubMedCAS Google Scholar
Kelly LW, Barden CA, Tiedeman JS, Hatchell DL. Alterations in viscosity and filterability of whole blood and blood cell subpopulations in diabetic cats. Exp Eye Res 1993; 56: 341–7. ArticlePubMedCAS Google Scholar
Dobbie JG, Kwaan HC, Colwell J, Suwanwela N. Role of platelets in pathogenesis of diabetic retinopathy. Arch Ophthalmol 1974; 91: 107–9. PubMedCAS Google Scholar
Diacovo TG, Puri KD, Warnock RA et al. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 1996; 273: 252–5. PubMedCAS Google Scholar
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–5. ArticlePubMedCAS Google Scholar
Aiello LP, Northrup JM, Keyt BA et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Archives of Ophthalmology 1995; 113: 1538–44. PubMedCAS Google Scholar
Takagi H, King GL, Robinson GS et al. Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Opthalmol Vis Sci 1996; 37: 2165–76. CAS Google Scholar
Xia P, Aiello LP, Ishii H et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 1996; 98: 2018–26. PubMedCAS Google Scholar
Thieme H, Aiello LP, Takagi H et al. Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells. Diabetes 1995; 44: 98–103. PubMedCAS Google Scholar
Okamoto N, Tobe T, Hacket SF et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina. A new model of intraretinal and subretinal neovascularization. Am J Pathol 1997; 151: 281–91. PubMedCAS Google Scholar
Aiello LP, Pierce EA, Foley ED et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92: 10457–61. ArticlePubMedCAS Google Scholar
Takagi H, King GL, Aiello LP. Identification and characterization of vascular endothelial growth factor receptor (Flt) in bovine retinal pericytes. Diabetes 1996; 45: 1016–23. PubMedCAS Google Scholar
Adamis AP, Miller J, Bernal M-T et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445–50. PubMedCAS Google Scholar
Shima D, Adamis AP, Ferrara N et al. Hypoxic induction of endothelial cell growth factors in retinal cells: Identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1995; 2: 182–93. Google Scholar
Malecaze F, Clamens S, Simorre-Pinatel V et al. Detection of vascular endothelial growth factor messanger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994; 112: 1476–82. PubMedCAS Google Scholar
Hata Y, Duh E, Zhang K et al. Transcriptoin factors sp1 and sp3 affect vascular endothelial growth factor receptor KDR expression through a novel recognition sequence. J Biol Chem 1998; 273: 19294–303. ArticlePubMedCAS Google Scholar
Ishii H, Jirousek MR, Koya D et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996; 272: 728–31. PubMedCAS Google Scholar
Danis RP, Bingaman DP, Jirousek M, Yang Y. Inhibition of intraocular neovascularizatoin caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci 1998; 39: 171–9. PubMedCAS Google Scholar
Aiello LP, Bursell SE, Clermont A et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997; 46: 1473–80. PubMedCAS Google Scholar
Hammes H-P, Brownlee M, Jonczyk A et al. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature Med 1996; 2: 529–33. ArticlePubMedCAS Google Scholar
Luna J, Tobe T, Mousa SA et al. Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 1998; 75: 563–73. Google Scholar
Friedlander M, Brooks PC, Shaffer RW et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995; 270: 1500–2. PubMedCAS Google Scholar
Smith LE, Kopchick JJ, Chen W et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 1997; 276: 1706–9. ArticlePubMedCAS Google Scholar
Freund KB, Yannuzzi LA, Sorenson JA. Age-related macular degeneration of choroidal neovascularization. Am J Ophthalmol 1993; 115: 786–91. PubMedCAS Google Scholar
Group MPS. Persistent and recurrent neovascularization after krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Arch Ophthalmol 1990; 108: 825–31. Google Scholar
Sarks SH. Ageing and degeneration in the macular region: A clinico-pathological study. Br J Ophthalmol 1976; 60: 324–41. PubMedCAS Google Scholar
Chen JC, Fitzke FW, Pauleikhoff D, Bird AC. Functional loss in age-related Bruch's membrane change with choroidal perfusion defect. Invest Ophthalmol Vis Sci 1992; 33: 334–40. PubMedCAS Google Scholar
Green WR, Enger C. Age-related macular degeneration histopathological studies. Ophthalmology 1992; 100: 1519–35. Google Scholar
Bressler NM, Bressler SB, Fine SL. Age-related macular degeneration. [Review]. Surv Ophthalmol 1988; 32: 375–413. ArticlePubMedCAS Google Scholar
Allikmets R, Shroyer NF, Singh N et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 1997; 277: 1805–7. ArticlePubMedCAS Google Scholar
Lopez PF, Sippy BD, Lambert HM et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1996; 37: 855–68. PubMedCAS Google Scholar
Ishibashi T, Hata Y, Yoshikawa H et al. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 1997; 235: 159–67. ArticlePubMedCAS Google Scholar
Friedlander M, Brooks PC, Shaffer RW et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995; 270: 1500–2. PubMedCAS Google Scholar
Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–42. ArticlePubMedCAS Google Scholar
Stone J, Itin A, Alon T et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 1995; 15: 4738–47. PubMedCAS Google Scholar
Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci 1997; 38: 1653–66. PubMedCAS Google Scholar
Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125: 1591–8. PubMedCAS Google Scholar
Alon T, Hemo I, Itin A et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med 1995; 1: 1024–8. ArticlePubMedCAS Google Scholar
Benjamin LE, Golijanin D, Itin A et al. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103: 159–65. ArticlePubMedCAS Google Scholar
Williamson JR, Chang K, LeJeune W et al. Links between retinal vascular dysfunction induced by elevated glucose levels and VEGF. ARVO abstracts. Invest Ophthalmol Vis Sci 1996; 37: S47. Google Scholar
Miyamoto K, Ogura Y, Hamada M et al. In vivo quantification of leukocyte behavior in the retina during endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 1996; 37: 2708–15. PubMedCAS Google Scholar