ZOO-FISH Analysis in a Species of the Order Chiroptera: Glossophaga soricina (Phyllostomidae) (original) (raw)
Baker RJ, Bass RA (1979) Evolutionary relationships of the Brachyphyllinae to the glossophagine genera Glossophaga and Monophyllus. J Mammal 60: 364-372. Article Google Scholar
Baker RJ, Honeycutt RL, Bass RA (1988) Genetics. In: Greenhall AM, Schmidt U, eds. Natural History of Vampire Bats. Boca Raton, Florida: CRC Press, pp. 32-40. Google Scholar
Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81: 18-25. ArticlePubMedCAS Google Scholar
Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43: 756-765. Article Google Scholar
Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H (1998) Emerging pattern of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577-589. PubMedCAS Google Scholar
Dixkens C, Klett C, Bruch J et al. (1998) ZOO-FISH analysis in insectivores: ‘Evolution extols the virtue of the status quo’. Cytogenet Cell Genet 80: 61-67. ArticlePubMedCAS Google Scholar
Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivora: comparison with that of platyrrhine monkeys. Cytogenet Cell Genet 35: 200-208. PubMedCAS Google Scholar
Frönicke LJ, Müller-Navia J, Romanakis K, Scherthan H (1997) ZOO-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106: 108-113. ArticlePubMed Google Scholar
Gardner AL (1977) Chromosomal variation in Vampyressa and a review of chromosomal evolution in the Phyllostomidae. Syst Zool 26: 300-318. Article Google Scholar
Gibbons A (1992) Evolutionary biology. Is ‘flying primate’ hypothesis headed for a crash landing? Science 256: 86-89. Google Scholar
Haiduk MW, Baker RJ (1982) Cladistical analysis of G-banded chromosomes of nectar feeding bats (Glossophaginae: Phyllostomidae). Syst Zool 31: 252-265. Article Google Scholar
Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chrom Res 5: 5-11. ArticlePubMedCAS Google Scholar
Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71: 168-174. PubMedCAS Google Scholar
Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611-8615. ArticlePubMedCAS Google Scholar
Morielle E, Varella-Garcia M (1988) Variability of nucleolus organizer regions in phyllostomid bats. Rev Bras Genet 11: 853-871. Google Scholar
Nadeau JH, Sankoff D (1998) The lengths of undiscovered conserved segments in comparative maps. Mammal Genome 9: 491-495. ArticleCAS Google Scholar
Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81: 814-818. ArticlePubMedCAS Google Scholar
Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244: 259-262. Article Google Scholar
Patton JC, Baker RJ (1978) Chromosomal homology and evolution of phyllostomatoid bats. Syst Zool 27: 449-462. Article Google Scholar
Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) ZOO-FISH delineates conserved chromosomal segments in horse and man. Chrom Res 4: 218-225. ArticlePubMedCAS Google Scholar
Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H (1995a) Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26: 372-378. ArticlePubMedCAS Google Scholar
Rettenberger G, Klett C, Zechner U et al. (1995b) ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chrom Res 3: 479-486. ArticlePubMedCAS Google Scholar
Richard S, Dutrillaux B (1998) Origin of human chromosome 21 and its consequences: a 50 million-year-old story. Chrom Res 6: 263-268. ArticlePubMedCAS Google Scholar
Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342-347. ArticlePubMedCAS Google Scholar
Solinas-Toldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27: 489-496. ArticlePubMedCAS Google Scholar
Van Den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mammal Genome 6: 521-525. ArticleCAS Google Scholar
Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Genet 44: 186-197. ArticlePubMedCAS Google Scholar
Wakefield MJ, Graves JAM (1996) Comparative maps of vertebrates. Mammal Genome 7: 715-716. ArticleCAS Google Scholar
Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppresssion hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265-270. ArticlePubMedCAS Google Scholar
Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211-217. PubMedCAS Google Scholar