Life and death decisions: the role of the IAPs in modulating programmed cell death (original) (raw)
Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. J Br Cancer 1972; 26: 239–257. CAS Google Scholar
Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 1994; 76: 777–779. ArticlePubMedCAS Google Scholar
Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462. ArticlePubMedCAS Google Scholar
King KL, Cidlowski JA. Cell cycle and apoptosis: Common pathways to life and death. J Cell Biochem 1995; 58: 175–1180. ArticlePubMedCAS Google Scholar
Hale AJ, Smith CA, Sutherland LC, et al. Apoptosis: Molecular regulation of cell death. Eur J Biochem 1996; 236: 1–26. ArticlePubMedCAS Google Scholar
Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192. ArticlePubMedCAS Google Scholar
White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996; 10: 1–15. PubMedCAS Google Scholar
Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-encoded BHRF1 protein, a viral homolog of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci 1993; 90: 8479–8483. ArticlePubMedCAS Google Scholar
Neilan JG, Lu Z, Afonzo CL, Kutish GF, Sussman MD, Rock DL. An African swine fever virus gene with similarity to the proto-oncogene bcl-2 and Epstein-Barr virus gene BHRF1. J Virol 1993; 67: 4391–4394. PubMedCAS Google Scholar
White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI, Gooding L. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Mol Cell Biol 1992; 12: 2570–2580. PubMedCAS Google Scholar
Rowe M, Peng-Pilon M, Huen DS, et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. J Virol 1994; 68: 5602–5612. PubMedCAS Google Scholar
Tewari M, Wolf FW, Seldin MF, O'Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154: 1456–1462. Google Scholar
Ray CA, Black RA, Kronheim SR, et al. Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 1992; 69: 597–604. ArticlePubMedCAS Google Scholar
Komiyama T, Ray CA, Pickup DJ, et al. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin CrmA. J Biol Chem 1994; 269: 19331–19337. PubMedCAS Google Scholar
Wang L, Muira M, Bergeron L, Zhu H, Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78: 739–750. ArticlePubMedCAS Google Scholar
Tewari M, Quan LT, O'Rourke K, et al. Yama/CPP-32B, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleases the death substrate poly(ADP-ribose)polymerase. Cell 1995; 81: 801–809. ArticlePubMedCAS Google Scholar
Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43. ArticlePubMedCAS Google Scholar
Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991; 254: 1388–1390. ArticlePubMedCAS Google Scholar
Kamita SG, Majima K, Maeda S. Identification and characterization of the p35 gene of Bombix mori nuclear polyhedrosis virus that prevent virus-induced apoptosis. J Virol 1993; 67: 455–463. PubMedCAS Google Scholar
Bertin J, Armstrong RC, Ottilie S, et al. DED-containing herpesvirus and poxvirus proteins inhibit both Fas-and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 1172–1176. ArticlePubMedCAS Google Scholar
McFadden G, Graham K, Ellison K, et al. Interruption of cytokine networks by poxviruses: lessons from myxoma virus. J Leukoc Biol 1995; 5745: 731–738. Google Scholar
Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993; 67: 2168–2174. PubMedCAS Google Scholar
Birnbaum MJ, Clem RJ, Miller LK. An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a peptide with Cys/His sequence motifs. J Virol 1994 68: 2521–2528. PubMedCAS Google Scholar
Clem RJ, Hardwick JM, Miller LK. Antiapoptotic genes of baculoviruses. Cell Death Differ 1996; 3: 9–16. CASPubMed Google Scholar
Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994; 14: 5212–5222. PubMedCAS Google Scholar
Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995; 80: 167–178. ArticlePubMedCAS Google Scholar
Brzustowitcz LM, Lehner T, Castilla LH, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 1990; 344: 540–541. Article Google Scholar
Gilliam TC, Brzustowitcz LM, Castillo LH, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 1990; 345: 823–825. ArticlePubMedCAS Google Scholar
Melki J, Abdelhak S, Sheth P, et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 1990; 344: 767–768. ArticlePubMedCAS Google Scholar
Xu DG, Korneluk RG, Tamai K, et al. Distribution of neuronal apoptosis inhibitory protein-like immunoreactivity in the rat central nervous system. J Comp Neurol 1997; In Press.
Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353. ArticlePubMedCAS Google Scholar
Xu DG, Crocker SJ, Doucet JP, et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 1997; 3: 997–1004. ArticlePubMedCAS Google Scholar
Smith-Swintosky VL, Kraemer PJ, Bruce AJ, et al. Bacterial alkaloids mitigate seizure-induced hippocampal damage and spatial memory deficits. Exp Neurol 1996; 141: 287–296. ArticlePubMedCAS Google Scholar
Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155–165. ArticlePubMedCAS Google Scholar
Sommerville MJ, Hunter AGW, Aubrey HL, Korneluk RG, MacKenzie AE, Surh LC. Clinical application of the molecular diagnosis of spinal muscular atrophy: Deletions of neuronal apoptosis inhibitor protein and survival motor neuron genes. Am J Med Genetics: In press.
van der Steege G, Grootscholten PM, Cobben JM, et al. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am J Hum Genetics 1996; 59: 834–838. CAS Google Scholar
Liu Q, Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J 1996; 15: 3555–3565. PubMedCAS Google Scholar
Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL. Cloning and expression of apoptosis inhibitory protein homologues that function to inhibit apoptosis and/or bind tumor necrosis factor receptor associated factors. Proc Natl Acad Sci USA 1996; 93: 4974–4978. ArticlePubMedCAS Google Scholar
Duckett CS, Nava VE, Gedrich RW, et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 1996; 15: 2685–2694. PubMedCAS Google Scholar
Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor or apoptosis proteins. Cell 1995a; 83: 1243–1252. ArticlePubMedCAS Google Scholar
Digby MR, Kimpton WG, York JJ, Connick TE, Lowenthal JW. ITA: a vertebrate homologue of IAP that is expressed in T lymphocytes. DNA Cell Biol 1996; 15: 981–988. ArticlePubMedCAS Google Scholar
Separovic E-R, Liston P, Lefebvre C, Korneluk RG. Assignment of human inhibitor of apoptosis protein (IAP) genes xiap, hiap-1, and hiap-2 to chromosomes Xq25 and 11q22–23 by fluorescence in situ hybridization. Genomics 1996; 37: 404–406. Article Google Scholar
Kozak M. An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol 1991; 115: 887–903. ArticlePubMedCAS Google Scholar
Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203: 155–177. PubMedCAS Google Scholar
Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995; 9: 1694–1708. PubMedCAS Google Scholar
White K, Tahaoglu E, Steller H. Cell killing by the Drosophila gene reaper. Science 1996; 271: 805–807. ArticlePubMedCAS Google Scholar
Chen P, Nordstrom W, Gish B, Abrams JM. Grim, a novel cell death gene in Drosophila. Genes Dev 1996; 10: 1773–1782. PubMedCAS Google Scholar
Song ZW, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science 1997; 275: 536–540. ArticlePubMedCAS Google Scholar
Goldstein P, Marguet D, Depraetere V. Homology between reaper and the cell death domains of Fas and TNFR1. Cell 1995; 81: 185–186. Article Google Scholar
Hay BA, Wassarman DA, Rubin GM. Drosophila homologues of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 1995; 83: 1253–1262. ArticlePubMedCAS Google Scholar
Saurin AJ, Borden KLB, Boddy MN, Freemont PS. Does this have a familiar RING? Trends Biochem Sci 1996; 21: 197–235. Article Google Scholar
Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995; 269: 1885–1888. ArticlePubMedCAS Google Scholar
Xue D, Horvitz R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995; 377: 248–251. ArticlePubMedCAS Google Scholar
Dorn R, Krauss V, Reuter G, Saumweber H. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci USA 1993; 90: 11376–11380. ArticlePubMedCAS Google Scholar
Harvey AJ, Bidwal AP, Miller L. Doom, a product of the Drosophila mod(mgd4) gene, induces apoptosis and binds to baculovirus inhibitor-of-apoptosis proteins. Mol Cell Biol 1997; 17: 2835–2843. PubMedCAS Google Scholar
Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 1994; 76: 7959–7962. Google Scholar
Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 1995; 85: 3378–3404. PubMedCAS Google Scholar
Durie FH, Foy TM, Masters SR, Laman JD, Noelle RJ. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol Today 1994; 15: 406–411. ArticlePubMedCAS Google Scholar
Kitson J, Raven T, Jiang Y-P, et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996; 384: 372–375. ArticlePubMedCAS Google Scholar
Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kD tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kD TNF receptor. J Biol Chem 1993; 268: 18542–18548. PubMedCAS Google Scholar
Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83: 793–802. ArticlePubMedCAS Google Scholar
Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 1995; 81: 495–504. ArticlePubMedCAS Google Scholar
Chinnaiyan AM, Tewari KO, Dixit VM. FADD: a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512. ArticlePubMedCAS Google Scholar
Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 1996; 85: 817–827. ArticlePubMedCAS Google Scholar
Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interactng protease, in Fas/Apo-1-and TNF receptor-induced cell death. Cell 1996; 85: 803–815. ArticlePubMedCAS Google Scholar
Chinnaiyan AM, Tepper CG, Seldin MF, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996; 271: 4961–4965. ArticlePubMedCAS Google Scholar
Stanger BZ, Leder P, Lee T-H, Kim E, Seed B. RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81: 513–523. ArticlePubMedCAS Google Scholar
Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387–396. ArticlePubMedCAS Google Scholar
Ahmad M, Srinivasula S, Wang L, et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 1997; 57: 615–619. PubMedCAS Google Scholar
Hsu H, Shu H-B, Pan M-G, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299–308. ArticlePubMedCAS Google Scholar
Shu H-B, Takeuchi M, Goeddel DV. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA 1996; 93: 13973–13978. ArticlePubMedCAS Google Scholar
Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78: 681–692. ArticlePubMedCAS Google Scholar
Rothe M, Sarma V, Dixit VM, Goeddel DV. TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40. Science 1995; 269: 1424–1426. ArticlePubMedCAS Google Scholar
Cheng G, Baltimore D. TANK, a co-inducer with TRAF2 of TNF-and CD40L-mediated NF-kB activation. Genes Dev 1996; 10: 963–973. PubMedCAS Google Scholar
Grilli M, Chiu JJ, Lenardo M. NF-kB and Rel: Participants in a multiform transcriptional regulatory system. Int Rev Cytol 1993; 143: 1–60 ArticlePubMedCAS Google Scholar
Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kB activation. Proc Natl Acad Sci USA 1996; 93: 6721–6725. ArticlePubMedCAS Google Scholar
Opipari AW, Hu HM, Yabkowitz R, Dixit VM. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267: 12424–12427. PubMedCAS Google Scholar
Sarma V, Lin Z, Clark L, et al. Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J Biol Chem 1995; 270: 12343–12346. ArticlePubMedCAS Google Scholar
Hoffmann K, Bucher P, Tschopp J. The CARD domain: a new apoptotic signaling motif. TiBS 1997; 22: 155–156 Google Scholar
Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Goeddel DV. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 1991; 88: 9292–9296. ArticlePubMedCAS Google Scholar
Tartaglia LA, Goeddel DV, Reynolds C, et al. Stimulation of human T cell proliferation by specific activation of the 75-kD tumor necrosis factor receptor. J Immunol 1993; 151: 4637–4641. PubMedCAS Google Scholar
Gehr G, Gentz R, Brockhaus M, Loetscher H, Lesslauer W. Both tumor necrosis factor receptor types mediate proliferative signals in human mononuclear cell activation. J Immunol 1992; 149: 911–917. PubMedCAS Google Scholar
Heller RA, Song K, Fan N, Chang DJ. The p70 tumor necrosis factor receptor mediates cytotoxicity. Cell 1992; 70: 47–56. ArticlePubMedCAS Google Scholar
Grell M, Scheurich P, Meager A, Pfizenmaier K. TR60 and TR80 tumor necrosis factor (TNF)-receptors can independently mediate cytolysis. Lymphokine Cytokine Res 1993; 12: 143–148. PubMedCAS Google Scholar
Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 1996; 84: 551–562. ArticlePubMedCAS Google Scholar
Lee SY, Park CG, Choi Y. T cell receptor-dependent cell death of T cell hybridomas mediated by the CD30 cytoplasmic domain in association with tumor necrosis factor receptor-associated factors. J Exp Med 1996; 183: 669–674. ArticlePubMedCAS Google Scholar
Gedrich RW, Gilfillan MC, Duckett CS, Van Dongen JL, Thompson CB. CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. J Biol Chem 1996; 271: 12852–12858. ArticlePubMedCAS Google Scholar
Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB. Induction of nuclear factor kB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 1997; 17: 1535–1542. PubMedCAS Google Scholar
Tsitsikov EN, Wright DW, Geha RS. CD30 induction of human immunodefiency virus gene transcription is mediated by TRAF2. Proc Natl Acad Sci USA 1997; 94: 1390–1395. ArticlePubMedCAS Google Scholar
Hu HM, O'Rourke K, Boguski MS, Dixit VM. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem 1994; 269: 30069–30072. PubMedCAS Google Scholar
Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995; 80: 389–399. ArticlePubMedCAS Google Scholar
Cheng G, Cleary AM, Ye Z, Hong DI, Lederman S, Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 1995; 267: 1494–1498. ArticlePubMedCAS Google Scholar
Regnier CH, Tomasetto C, Moog-Lutz C, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 1995; 270: 25715–25721. ArticlePubMedCAS Google Scholar
Nakano H, Oshima H, Chung W, et al. TRAF5, an activator of NF-kB and putative signal transducer for the lymphotoxin-b receptor. J Biol Chem 1996; 271: 14661–14664. ArticlePubMedCAS Google Scholar
Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–446. ArticlePubMedCAS Google Scholar
Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300–304. ArticlePubMedCAS Google Scholar