Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes (original) (raw)

References

  1. Rosenthal, A. Auto transplants for Parkinson's disease. Neuron 20 , 169–172 (1998).
    Article CAS Google Scholar
  2. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).
    Article CAS Google Scholar
  3. Gage, F.H., Ray, J. & Fisher, L.J. Isolation, characterization and use of stem cells from the CNS. Ann. Rev. Neurosci. 18, 159– 192 (1995).
    Article CAS Google Scholar
  4. Weiss, S. et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393 (1996).
    Article CAS Google Scholar
  5. Snyder, E.Y. & Macklis, J.D. Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin. Neurosci. 3, 310– 316 (1996).
    Article CAS Google Scholar
  6. Martínez-Serrano, A. & Björklund, A. Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538 ( 1997).
    Article Google Scholar
  7. McKay, R. Stem cells in the central nervous system. Science 276 , 66–71 (1997).
    Article CAS Google Scholar
  8. Studer, L., Tabar, V. & McKay, R.D.G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).
    Article CAS Google Scholar
  9. Snyder, E.Y., Yoon, C., Flax, J.D. & Macklis, J.D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11663–11668 (1997).
    Article CAS Google Scholar
  10. Zetterström, R. H. et al. Dopamine neuron agenesis in _Nurr_1-deficient mice. Science 276, 248–250 (1997).
    Article Google Scholar
  11. Saucedo-Cardenas, O. et al. _Nurr_1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA 95, 4013–4018 (1998).
    Article CAS Google Scholar
  12. Castillo, S.O. et al. Dopamine biosythesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol. Cell. Neurosci. 11, 36–46 (1998).
    Article CAS Google Scholar
  13. Snyder, E.Y., Taylor, R.M. & Wolfe, J.H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370 (1995).
    Article CAS Google Scholar
  14. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M. & McKay, R.D.G. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 ( 1996).
    Article CAS Google Scholar
  15. Altman, J. & Bayer, S.A. in The rat nervous system, 2nd edn (ed. Paxinos, G.) 1054 (Academic, San Diego, CA; 1995).
    Google Scholar
  16. McConnell, S.K. & Kaznowski, C.E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 ( 1991).
    Article CAS Google Scholar
  17. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessel, T.M. Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).
    Article CAS Google Scholar
  18. Ye, W., Shimamura, K., Rubenstein, J.L.R., Hynes, M. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).
    Article CAS Google Scholar
  19. Eichele, G. Retinoids: from hindbrain patterning to Parkinson's disease. Trends Genet. 13, 343–345 ( 1997).
    Article CAS Google Scholar
  20. Krezel, W. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 864–867 (1998).
    Google Scholar
  21. Kitchens, D.L., Snyder, E.Y. & Gottlieb, D.I. FGF & EGF are mitogens for immortilized neural progenitors. J. Neurobiol. 25, 797– 807 (1994).
    Article CAS Google Scholar
  22. Lehmann, J.M. et al. Retinoids selective for retinoid X receptor response pathways. Science 258, 1944–1946 (1992).
    Article CAS Google Scholar
  23. Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and Nurr1. Genes Dev. 9, 769–782 ( 1995).
    Article CAS Google Scholar
  24. O'Malley, E.K., Sieber, B.-A., Black, I.B. & Dreyfus, C.F. Mesencephalic type I astrocytes mediate the survival of substantia nigra dopaminergic neurons in culture. Brain Res. 582, 65– 70 (1992).
    Article CAS Google Scholar
  25. Denis-Donini, S., Glowinski, J. & Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307, 641–643 (1984).
    Article CAS Google Scholar
  26. Zetterström, R.H., Williams, R., Perlmann, T. & Olson, L. Cellular expression of the immediate early transcription factors _Nurr_1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res. 41, 111–120 (1996).
    Article Google Scholar
  27. McCaffery, P. & Dräger, U.C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl. Acad. Sci. USA 91, 7772– 7776 (1994).
    Article CAS Google Scholar
  28. Trupp, M. et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789 (1996).
    Article CAS Google Scholar
  29. Jing, S.Q. et al. GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFRα, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).
    Article CAS Google Scholar
  30. Hyman, C. et al. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347 (1994).
    Article CAS Google Scholar
  31. Lin, L.H., Doherty, D.H., Lile, J.D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1173 ( 1993).
    Article CAS Google Scholar
  32. Law, S.W., Conneely, O.M., DeMayo, F.J. & O'Malley, B.W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 6, 2129–2135 (1992).
    CAS PubMed Google Scholar
  33. Naveilhan, P. et al. Expression and regulation of GFRα3, a glial cell line-derived neurotrophic factor family receptor. Proc. Nat. Acad. Sci. USA 95, 1295–1300 ( 1998).
    Article CAS Google Scholar
  34. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890– 902 (1980).
    Article CAS Google Scholar

Download references