- Sherr, C. & Roberts, J. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1514 (1999).
Article CAS Google Scholar
- Elledge, S. J., Winston, J. & Harper, J. W. A question of balance: the roles of cyclin kinase inhibitors in development and tumorigenesis. Trends Cell Biol. 6, 388–392 ( 1996).
Article CAS Google Scholar
- Sheaff, R. J. & Roberts, J. M. in Cell Cycle Control, Results Probl. Cell Differ. Vol. 22 (ed. Pagano, M.) 1– 34 (Springer, New York, 1998).
Book Google Scholar
- Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9, 788–799 (1997).
Article CAS Google Scholar
- Pagano, M. Regulation of cell cycle regulatory proteins by the ubiquitin pathway. FASEB J. 11, 1067–1075 ( 1997).
Article CAS Google Scholar
- Patton, E., Willems, A. & Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don"t Skp the F-box hypothesis. Trends Genet. 14, 6–14 (1998).
Article Google Scholar
- Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3, 231–234 ( 1997).
Article CAS Google Scholar
- Esposito, V. et al. Prognostic role of the cell cycle inhibitor p27 in non small cell lung cancer. Cancer Res. 57, 3381– 3385 (1997).
CAS PubMed Google Scholar
- Mayor, S. Protein marker linked with poor cancer outcome. Br. Med. J. 314, 323 (1997).
Article Google Scholar
- Steeg, P. & Abrams, J. Cancer prognostic: past, present and p27. Nature Med. 3, 152– 154 (1997).
Article CAS Google Scholar
- Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 ( 1998).
Article CAS Google Scholar
- Budel, L. et al. Characterization of p21, p27, p53 and E2F-1 cell cycle regulators in mantle cell lymphoma: increased ubiquitin-proteasome mediated degradation of p27. Blood (in the press).
- Piva, R. et al. Increased proteasome-dependent degradation of p27 in malignant gliomas. J. Neuropathol. Exp. Neurol. (in the press).
- Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).
Article CAS Google Scholar
- Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).
Article CAS Google Scholar
- Shirane, M. et al. Down-regulation of p27 by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol Chem. 274, 13886–13893 (1999).
Article CAS Google Scholar
- Muller, D. et al. Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene 15, 2561–2576 (1997).
Article CAS Google Scholar
- Sheaff, R., Groudine, M., Gordon, M., Roberts, J. & Clurman, B. Cyclin E-Cdk2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).
Article CAS Google Scholar
- Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16, 5334– 5344 (1997).
Article CAS Google Scholar
- Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
Article CAS Google Scholar
- Koepp, D., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97, 431– 433 (1999).
Article CAS Google Scholar
- Latres, E., Chiaur, D. S. & Pagano, M. The human F-box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–855 ( 1999).
Article CAS Google Scholar
- Winston, J. T. et al. The SCFβ-TRCP ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 ( 1999).
Article CAS Google Scholar
- Laney, J. & Hochstrasser, M. Substrates targeting in the system. Cell 97, 427–430 (1999).
Article CAS Google Scholar
- Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp-1 and p45Skp-2 are essential elements of the cyclin A-Cdk2 S phase kinase. Cell 82, 915–925 (1995).
Article CAS Google Scholar
- Yaron, A. et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396, 590– 594 (1998).
Article CAS Google Scholar
- Lisztwan, J. et al. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17, 368–383 (1998).
Article CAS Google Scholar
- Michel, J. J. & Xiong, Y. Human Cul1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ. 9, 435– 449 (1998).
CAS PubMed Google Scholar
- Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).
Article CAS Google Scholar
- Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IB by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284– 294 (1999).
Article CAS Google Scholar
- Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated Cdk inhibitor Sic1p. Cell 91, 221–230 (1997).
Article CAS Google Scholar
- Kominami, K. & Toda, T. Fission yeast WD-repeat protein pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev. 11, 1548–1560 ( 1997).
Article CAS Google Scholar
- Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).
Article CAS Google Scholar
- Kominami, K., Ochotorena, I. & Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo- complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin1-F-box) ubiquitin ligase. Genes Cells 3, 721– 735 (1998).
Article CAS Google Scholar
- Jallepalli, P. V., Tien, D. & Kelly, T. J. sud1(+) targets cyclin-dependent kinase-phosphorylated Cdc18 and Rum1 proteins for degradation and stops unwanted diploidization in fission yeast. Proc. Natl Acad. Sci. USA 95, 8159–8164 (1998).
Article CAS Google Scholar
- Maekawa, H., Kitamura, K. & Shimoda, C. The Ste16 WD-repeat protein regulates cell-cycle progression under starvation through the Rum1 protein in Schizosaccharomyces pombe. Curr. Genet. 33, 29– 37 (1998).
Article CAS Google Scholar
- Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27 is instigated by Jab1. Nature 398, 160– 164 (1999).
Article CAS Google Scholar
- Yu, Z. K., Gervais, J. & Zhang, H. Human Cul1 associates with the Skp1/Skp2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).
Article CAS Google Scholar
- Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin–protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol. 1, 14–19 (1999).
Article CAS Google Scholar
- Pagano, M. et al. Regulation of the human cell cycle by the Cdk2 protein kinase . J. Cell Biol. 121, 101– 111 (1993).
Article CAS Google Scholar
- Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 761– 771 (1992).
Article Google Scholar
- O’Connor, P. & Jackman, J. in Cell Cycle: Materials and Methods (ed. Pagano, M.) 63–74 (Springer, New York, 1995).
Google Scholar
- Pagano, M. in Cell Cycle: Materials and Methods (ed. Pagano, M.) 271– 280 (Springer, New York, 1995).
Google Scholar
- Harlow, E. & Lane, D. in Using Antibodies. A Laboratory Manual (eds Harlow, E. & Lane, D.) 187–233 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1998).
Google Scholar
- Faha, B., Harlow, E. & Lees, E. The adenovirus E1A-associated kinase consists of cyclin E-p33cdk2 and Cyclin A-p33cdk2. J.Virol. 67, 2456–2465 (1993).
CAS PubMed PubMed Central Google Scholar
- Pagano, M., Draetta, G. & Jansen-Dürr, P. Association of cdk2 kinase with the transcription factor E2F during S phase. Science 255, 1144– 1147 (1992).
Article CAS Google Scholar
- Desai, D., Gu, Y. & Morgan, D. O. Activation of human cyclin-dependent kinase in vitro. Mol. Biol. Cell 3, 571– 582 (1992).
Article CAS Google Scholar
- Hochstrasser, M. There’s the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev. 12, 901– 907 (1998).
Article CAS Google Scholar