Rab5 regulates motility of early endosomes on microtubules (original) (raw)

References

  1. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).
    Article CAS Google Scholar
  2. Lippincott-Schwartz, J. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10, 52–59 ( 1998).
    Article CAS Google Scholar
  3. Matteoni, R. & Kreis, T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol. 105, 1253–1265 ( 1987).
    Article CAS Google Scholar
  4. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301– 1316 (1989).
    Article CAS Google Scholar
  5. McGraw, T. E., Dunn, K. W. & Maxfield, F. R. Isolation of a temperature-sensitive variant Chinese hamster ovary cell line with a morphologically altered endocytic recycling compartment. J. Cell Physiol. 155, 579– 594 (1993).
    Article CAS Google Scholar
  6. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).
    Article CAS Google Scholar
  7. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. & Gruenberg, J. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719– 731 (1990).
    Article CAS Google Scholar
  8. Riezman, H. Yeast endocytosis. Trends Cell Biol. 3, 273–277 (1993).
    Article CAS Google Scholar
  9. Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332– 20335 (1997).
    Article CAS Google Scholar
  10. Murphy, C. et al. Endosome dynamics regulated by a Rho protein. Nature 384, 427–432 ( 1996).
    Article CAS Google Scholar
  11. Novick, P. & Brennwald, P. Friends and family: the role of the Rab GTPases in vesicular transport. Cell 75, 597–601 (1993).
    Article CAS Google Scholar
  12. Simonsen, A. et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).
    Article CAS Google Scholar
  13. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 ( 1999).
    Article CAS Google Scholar
  14. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae . EMBO J. 15, 6483–6494 (1996).
    Article CAS Google Scholar
  15. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).
    Article CAS Google Scholar
  16. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715– 728 (1992).
    Article CAS Google Scholar
  17. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287– 1296 (1994).
    Article CAS Google Scholar
  18. D"Arrigo, A., Bucci, C., Toh, B. H. & Stenmark, H. Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes. Eur. J. Cell Biol. 72, 95–103 (1997).
    CAS Google Scholar
  19. Scheel, J. & Kreis, T. E. Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro. J. Biol. Chem. 266, 18141–18148 (1991).
    CAS PubMed Google Scholar
  20. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
    Article CAS Google Scholar
  21. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368, 157– 160 (1994).
    Article CAS Google Scholar
  22. Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol 39, 105– 113 (1993).
    Article CAS Google Scholar
  23. Rybin, V. et al. GTPase activity of rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266– 269 (1996).
    Article CAS Google Scholar
  24. Barnard, R. J. O., Morgan, A. & Burgoyne, R. D. Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883 ( 1997).
    Article CAS Google Scholar
  25. Blocker, A. et al. Molecular requirements for bi-directional movement of phagosomes along microtubules. J. Cell Biol. 137, 113 –129 (1997).
    Article CAS Google Scholar
  26. Marlowe, K. J. et al. Changes in kinesin distribution and phosphorylation occur during regulated secretion in pancreatic acinar cells. Eur. J. Cell Biol. 75, 140–152 ( 1998).
    Article CAS Google Scholar
  27. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).
    Article CAS Google Scholar
  28. Patki, V. V. J., Lane, W. S., Toh, B. H., Shpetner, H. S. & Corvera, S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 94, 7326–7330 (1997).
    Article CAS Google Scholar
  29. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).
    Article CAS Google Scholar
  30. Siddhanta, U., McIlroy, J., Shah, A., Zhang, Y. & Backer, J. M. Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3"-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol. 143, 1647 –1659 (1998).
    Article CAS Google Scholar
  31. Goodson, H. V., Valetti, C. & Kreis, T. E. Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28 ( 1997).
    Article CAS Google Scholar
  32. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580– 585 (1998).
    Article CAS Google Scholar
  33. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).
    Article CAS Google Scholar
  34. Ferhat, L., Kuriyama, R., Lyons, G. E., Micales, B. & Baas, P. W. Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur. J. Neurosci. 10, 1383–1393 (1998).
    Article CAS Google Scholar
  35. Saito, N. et al. KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18, 425–438 ( 1997).
    Article CAS Google Scholar
  36. Hoang, E., Bost-usinger, L. & Burnside, B. Characterization of a novel C-kinesin (KIFC3) abundantly expressed in vertebrate retina and RPE. Exp. Eye Res. 69, 57–68 (1999).
    Article CAS Google Scholar
  37. Shpetner, H., Joly, M., Hartley, D. & Corvera, S. Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J. Cell Biol. 132, 595–605 (1996).
    Article CAS Google Scholar
  38. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 ( 1998).
    Article CAS Google Scholar
  39. Gaullier, J.-M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).
    Article CAS Google Scholar
  40. Stenmark, H., Aasland, R., Toh, B. H. & D’Arringo, A. Endosomal localization of the autoantigen EEA1 is mediated by zinc-binding FYVE finger . J. Biol. Chem. 271, 24048– 24054 (1996).
    Article CAS Google Scholar
  41. McBride, H. M . et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell (in the press).
  42. Gorvel, J.-P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991).
    Article CAS Google Scholar
  43. Keown, W. A., Campbell, C. R. & Kucherlapati, R. S. Methods for introducing DNA into mammalian cells . Methods Enzymol. 185, 527– 537 (1990).
    Article CAS Google Scholar
  44. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 ( 1997).
    Article CAS Google Scholar
  45. Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol. 61 , 13–34 (1999).
    Article CAS Google Scholar

Download references