Diverse and dynamic functions of the Sir silencing complex (original) (raw)
Craig, I.W. Organization of the human genome. J. Inherit. Metab. Dis.17, 391–402 (1994). ArticleCAS Google Scholar
Murphy, T.D. & Karpen, G.H. Centromeres take flight: α satellite and the quest for the human centromere. Cell93, 317–320 (1998). ArticleCAS Google Scholar
Wakimoto, B.T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell93, 321– 324 (1998). ArticleCAS Google Scholar
Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell93, 325–328 (1998). ArticleCAS Google Scholar
Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics116, 9– 22 (1987). CASPubMedPubMed Central Google Scholar
Moazed, D., Kistler, A., Axelrod, A., Rine, J. & Johnson, A.D. Silent information regulator protein complexes in S. cerevisiae: a Sir2/Sir4 complex and evidence for a regulatory domain in Sir4 that inhibits its interaction with Sir3. Proc. Natl Acad. Sci. USA94, 2186–2191 ( 1997). ArticleCAS Google Scholar
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. & Grunstein, M. Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell80, 583– 592 (1995). ArticleCAS Google Scholar
Braunstein, M., Rose, A., Holmes, S., Allis, C.D. & Broach, J. Transcriptional silencing in yeast is associated with reduced nucleosomal acetylation. Genes Dev.7, 592–604 (1993). ArticleCAS Google Scholar
Loo, S. & Rine, J. Silencers and domains of generalized repression. Science264, 1768– 1771 (1994). ArticleCAS Google Scholar
Bi, X. & Broach, J. DNA in transcriptionally silenced chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol. Cell. Biol.17, 7077– 7087 (1997). ArticleCAS Google Scholar
Gottschling, D.E. et al. Position effect at S. cerevisiae telomeres: reversible repression of pol 11 transcription. Cell63, 751–762 (1990). ArticleCAS Google Scholar
Moretti, P., Freeman, K., Coodly, L. & Shore, D. Evidence that a complex of Sir proteins interacts with a silencer and telomere-binding protein RAP1. Genes Dev.8, 2257– 2269 (1994). ArticleCAS Google Scholar
Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell75, 543 –555 (1993). ArticleCAS Google Scholar
Critchlow, S.E. & Jackson, S.P. DNA end-joining: from yeast to man. Trends Biol. Sci.23, 394–398 (1998). ArticleCAS Google Scholar
Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science280, 741–744 ( 1998). ArticleCAS Google Scholar
Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol.8, 653– 656 (1998). ArticleCAS Google Scholar
Gottlieb, S. & Esposito, R.E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell56, 771–776 (1989). ArticleCAS Google Scholar
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev.11, 255– 269 (1997). ArticleCAS Google Scholar
Smith, J.S. & Boeke, J.D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev.11, 241–254 (1997). ArticleCAS Google Scholar
Fritze, C. & Esposito, R. Direct evidence for Sir2 modulation of chromatin structure in yeast rDNA. EMBO J.16, 6495–6509 (1997). ArticleCAS Google Scholar
Brachmann, C.B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev.9, 2888–2902 (1995). ArticleCAS Google Scholar
Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature388, 900– 903 (1997). ArticleCAS Google Scholar
Astrom, S.U., Okamura, S.M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature397, 310 (1999). ArticleCAS Google Scholar
Mills, K.D., Sinclair, D.A. & Guarente, L. _MEC1_-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell97, 609–620 (1999). ArticleCAS Google Scholar
Lee, H.E., Paques, F., Sylvan, J. & Haber, J. Role of yeast SIR genes and mating type in directing DNA double strand breaks to homologous and non-homologous repair paths. Curr. Biol.9, 767–770 (1999). ArticleCAS Google Scholar
Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97, 621–633 (1999). ArticleCAS Google Scholar
Jeggo, P.A., Carr, A.M. & Lehman, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet.14, 312–316 (1998). ArticleCAS Google Scholar
Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science268, 1749– 1784 (1995). ArticleCAS Google Scholar
Marcand, S. et al. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev.10, 1297–1309 (1996). ArticleCAS Google Scholar
Straight, A.F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell97, 245–256 (1999). ArticleCAS Google Scholar
Schwab, M., Lutum, A.S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell90, 683–693 (1997). ArticleCAS Google Scholar
Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science278, 460– 463 (1997). ArticleCAS Google Scholar
Visintin, R., Hwang, E. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature398, 818– 823 (1999). ArticleCAS Google Scholar
Shou, W. et al. Exit from mitosis is triggered by tem1-dependent release of the protein phosphatase Cdc14 from Nucleolar RENT Complex. Cell97, 233–244 (1999). ArticleCAS Google Scholar
Weber, J.D. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol.1, 20–26 (1999). ArticleCAS Google Scholar
Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell3, 579– 591 (1999). ArticleCAS Google Scholar
San-Segundo, P.A. & Roeder, G.S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell97, 313–324 (1999). ArticleCAS Google Scholar
Sym, M., Engebrecht, J. & Roeder, G.S. ZIP1 is a synaptonenmal complex protein required for meiotic chromosome synapsis. Cell72, 365 –378 (1993). ArticleCAS Google Scholar
Mortimer, R.K. & Johnston, J.R. Life span of individual yeast cells. Nature183, 1751 –1752 (1959). ArticleCAS Google Scholar
Sinclair, D.A., Mills, K. & Guarente, L. Molecular mechanisms of yeast aging. Trends Biol. Sci.23, 131–134 ( 1998). ArticleCAS Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The Sir2/3/4 complex and Sir2 alone promote longevity in S. cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). ArticleCAS Google Scholar
Sinclair, D.A. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell91, 1033–1042 (1997). ArticleCAS Google Scholar
Park, P.U., Defossez, P.A. & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 3848– 3856 (1999). ArticleCAS Google Scholar
Defossez, P.A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell3, 447–455 (1999). ArticleCAS Google Scholar
Rothstein, R. & Gangloff, S. The shuffling of a mortal coil. Nature Genet.22, 4–6 (1999). ArticleCAS Google Scholar
Kobayashi, T. & Horiuchi, T. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombination hotspot activities. Genes Cells1, 465–474 (1996). ArticleCAS Google Scholar
Brewer, B.J. & Fangman, W.L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell55, 637–643 (1988). ArticleCAS Google Scholar
Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophy. Res. Commun.260, 273–279 (1999). ArticleCAS Google Scholar
C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018 (1998). Article Google Scholar
Sherman, J.M. et al. The conserved core of a human SIR2 homolog functions in yeast silencing. Mol. Biol. Cell10, 3045– 3059 (1999). ArticleCAS Google Scholar
Perez-Martin, J., Uria, J.A. & Johnson, A.D. Phenotypic switching in Candida Albicans is controlled by a SIR2 gene. EMBO J.18, 2580–2592 (1999). ArticleCAS Google Scholar
Tsang, A.W. & Escalante-Semerena, J.C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required for the lack of nicotinate mononucleotide: 5, 6-dimethylbenzimidazole phophoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Bacteriol.178, 7016–7019 (1996). ArticleCAS Google Scholar