Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica (original) (raw)

References

  1. Imbrie, J.et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovich forcing. Paleoceanography 7, 701–738 (1992).
    Article ADS Google Scholar
  2. Tzedakis, P. C.et al. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet. Sci. Lett. 150, 171–176 (1997).
    Article ADS CAS Google Scholar
  3. Berger, A. L. Long-term variations of daily insolation and Quaternary climatic change. J. Atmos. Sci. 35, 2362–2367 (1978).
    Article ADS Google Scholar
  4. Lorius, C.et al. A150,000-year climatic record from Antarctic ice. Nature 316, 591–596 (1985).
    Article ADS CAS Google Scholar
  5. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Vostok ice cores provides 160,000-year record of atmospheric CO2. Nature 329, 408–414 (1987).
    Article ADS CAS Google Scholar
  6. Jouzel, J.et al. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 402–408 (1987).
    Article ADS Google Scholar
  7. Raisbeck, G. M.et al. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326, 273–277 (1987).
    Article ADS Google Scholar
  8. Legrand, M., Lorius, C., Barkov, N. I. & Petrov, V. N. Vostok (Antarctic ice core): atmospheric chemistry changes over the last climatic cycle (160,000 years). Atmos. Environ. 22, 317–331 (1988).
    Article ADS CAS Google Scholar
  9. Chappellaz, J., Barnola, J.-M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Ice-core record of atmospheric methane over the past 160,000 years. Nature 127–131;(1990).
  10. Petit, J. R.et al. Paleoclimatological implications of the Vostok core dust record. Nature 343, 56–58 (1990).
    Article ADS Google Scholar
  11. Sowers, T.et al. 135 000 year Vostok—SPECMAP common temporal framework. Paleoceanography 8, 737–766 (1993).
    Article ADS Google Scholar
  12. Jouzel, J.et al. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364, 407–412 (1993).
    Article ADS Google Scholar
  13. Jouzel, J.et al. Climatic interpretation of the recently extended Vostok ice records. Clim. Dyn. 12, 513–521 (1996).
    Article Google Scholar
  14. Genthon, C.et al. Vostok ice core: climatic response to CO2and orbital forcing changes over the last climatic cycle. Nature 329, 414–418 (1987).
    Article ADS CAS Google Scholar
  15. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H. Greenhouse warming, climate sensitivity and ice core data. Nature 347, 139–145 (1990).
    Article ADS CAS Google Scholar
  16. Raynaud, D.et al. The ice record of greenhouse gases. Science 259, 926–934 (1993).
    Article ADS CAS Google Scholar
  17. Petit, J. R.et al. Four climatic cycles in Vostok ice core. Nature 387, 359–360 (1997).
    Article ADS CAS Google Scholar
  18. Kapitza, A. P., Ridley, J. K., Robin, G. d. Q., Siegert, M. J. & Zotikov, I. A. Alarge deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–686 (1996).
    Article ADS Google Scholar
  19. Bender, M., Sowers, T. & Labeyrie, L. D. The Dole effect and its variation during the last 130,000 years as measured in the Vostok core. Glob. Biogeochem. Cycles 8, 363–376 (1994).
    Article ADS CAS Google Scholar
  20. Barnola, J. M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus B 43, 83–91 (1991).
    Article ADS Google Scholar
  21. Lorius, C. & Merlivat, L. in Isotopes and Impurities in Snow and Ice. Proc. the Grenoble Symp. Aug./Sept. 1975 127–137 (Publ. 118, IAHS, (1977).
    Google Scholar
  22. Dahl-Jensen, D.et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).
    Article ADS CAS Google Scholar
  23. Salamatin, A. N.et al. Ice core age dating and paleothermometer calibration on the basis of isotopes and temperature profiles from deep boreholes at Vostok station (East Antarctica). J. Geophys. Res. 103, 8963–8977 (1998).
    Article ADS Google Scholar
  24. Krinner, G., Genthon, C. & Jouzel, J. GCM analysis of local influences on ice core δ signals. Geophys. Res. Lett. 24, 2825–2828 (1997).
    Article ADS Google Scholar
  25. Hoffmann, G., Masson, V. & Jouzel, J. Stable water isotopes in atmospheric general circulation models. Hydrol. Processes(in the press).
  26. Bassinot, F. C.et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).
    Article ADS Google Scholar
  27. Shackleton, N. J., Imbrie, J. & Hall, M. A. Oxygen and carbon isotope record of East Pacific core V19-30: implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planet. Sci. Lett. 65, 233–244 (1983).
    Article ADS CAS Google Scholar
  28. Steig, E.et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998).
    Article ADS CAS Google Scholar
  29. Howard, W. Awarm future in the past. Nature 388, 418–419 (1997).
    Article ADS CAS Google Scholar
  30. Malaizé, B., Paillard, D., Jouzel, J. & Raynaud, D. The Dole effect over the last two glacial-interglacial cycles. J. Geophys. Res.(in the press).
  31. Legrand, M. & Delmas, R. J. Formation of HCl in the Antarctic atmosphere. J. Geophys. Res. 93, 7153–7168 (1987).
    Article ADS Google Scholar
  32. Yung, Y. K., Lee, T., Chung-Ho & Shieh, Y. T. Dust: diagnostic of the hydrological cycle during the last glacial maximum. Science 271, 962–963 (1996).
    Article ADS CAS Google Scholar
  33. de Menocal, P. Plio-Pleistocene African climate. Science 270, 53–59 (1995).
    Article ADS CAS Google Scholar
  34. CLIMAP. Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum ( Geol. Soc. Am., Boulde, Colorado, Boulde (1981).
    Google Scholar
  35. Basile, I.et al. Patagonian origin dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573–589 (1997).
    Article ADS Google Scholar
  36. Basile, I. Origine des Aérosols Volcaniques et Continentaux de la Carotte de Glace de Vostok (Antarctique). Thesis, Univ. Joseph Fourier, Grenoble(1997).
    Google Scholar
  37. Leuenberger, M. & Siegenthalerr, U. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360, 449–451 (1992).
    Article ADS CAS Google Scholar
  38. Ramstein, G., Serafini-Le Treut, Y., Le Treut, H., Forichon, M. & Joussaume, S. Cloud processes associated with past and future climate changes. Clim. Dyn. 14, 233–247 (1998).
    Article Google Scholar
  39. Berger, A., Loutre, M. F. & Gallée, H. Sensitivity of the LLN climate model to the astronomical and CO2forcings over the last 200 ky. Clim. Dyn. 14, 615–629 (1998).
    Article Google Scholar
  40. Weaver, A. J., Eby, M., Fanning, A. F. & Wilbe, E. C. Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394, 847–853 (1998).
    Article ADS CAS Google Scholar
  41. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding termination II and their implications for the causes of glacial interglacial CO2changes. Paleoceanography 13, 352–364 (1998).
    Article ADS Google Scholar
  42. Cortijo, E.et al. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding ice-sheet growth. Nature 372, 446–449 (1994).
    Article ADS CAS Google Scholar
  43. Chappellaz, J.et al. Synchronous changes in atmospheric CH4and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993).
    Article ADS CAS Google Scholar
  44. Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice core records of atmospheric CO2around the last three glacial terminations. Science 283, 1712–1714 (1999).
    Article ADS CAS Google Scholar
  45. Stauffer, B.et al. Atmospheric CO2concentration and millenial-scale climate change during the last glacial period. Nature 392, 59–61 (1998).
    Article ADS CAS Google Scholar
  46. Martin, J. H. Glacial-interglacial CO2change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).
    Article ADS Google Scholar
  47. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).
    Article ADS Google Scholar
  48. Ritz, C. Un Modele Thermo-mécanique d'évolution Pour le Bassin Glaciaire Antarctique Vostok-Glacier Byrd: Sensibilité aux Valeurs de Paramètres Mal Connus Thesis, Univ. Grenoble(1992).
    Google Scholar
  49. Blunier, T.et al. Timing of the Antarctic Cold Reversal and the atmospheric CO2increase with respect to the Younger Dryas event. Geophys. Res. Lett. 24, 2683–2686 (1997).
    Article ADS CAS Google Scholar
  50. Waelbroeck, C.et al. Acomparison of the Vostok ice deuterium record and series from Southern Ocean core MD 88-770 over the last two glacial-interglacial cycles. Clim. Dyn. 12, 113–123 (1995).
    Article Google Scholar
  51. Blunier, T.et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998).
    Article ADS CAS Google Scholar
  52. Bender, M., Malaizé, B., Orchado, J., Sowers, T. & Jouzel, J. High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr.in The Role of High and Low Latitudes in Millennial Scale Global Change(eds Clark, P. & Webb, R.) (AGU Monogr., Am. Geophys. Union, in the press).

Download references