Defining the functions of trans-SNARE pairs (original) (raw)
References
Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA94, 6197–6201 (1997). ArticleADSCAS Google Scholar
Holthuis, J. C. M., Nichols, B. J., Druvakumar, S. & Pelham, H. R. B. Two syntaxin homologues in the TGN/endosomal system in yeast. EMBO J.17, 113–126 (1998). ArticleCAS Google Scholar
Ungermann, C., Nichols, B. J., Pelham, H. R. B. & Wickner, W. Avacuolar v-t-SNARE complex, the predominant form in vivo and on isolated organelles, is disassembled and activated for docking and fusion. J. Cell Biol.140, 61–69 (1998). ArticleCAS Google Scholar
Rothman, J. E. Mechanisms of intracellular membrane fusion Nature372, 55–63 (1994). ArticleADSCAS Google Scholar
Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature370, 191–193 (1994). ArticleADSCAS Google Scholar
Hay, J. C. & Scheller, R. SNAREs and NSF in targeted membrane fusion. Curr. Opin. Cell Biol.9, 505–512 (1997). ArticleCAS Google Scholar
Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J.13, 5051–5061 (1994). ArticleCAS Google Scholar
Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J.14, 2317–2325 (1995). ArticleCAS Google Scholar
Pfeffer, S. R. Transport vesicle docking: SNARE and associates. Annu. Rev. Cell Biol. Dev. Biol.12, 441–461 (1996). ArticleCAS Google Scholar
Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol.9, 496–504 (1997). ArticleCAS Google Scholar
Cao, X., Ballew, N. & Barlow, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J.17, 2156–2165 (1998). ArticleCAS Google Scholar
Sapperstein, S. K., Lupashin, V. V., Schmitt, H. D. & Waters, M. G. Assembly of the ER to Golgi SNARE complex requires Uso1p. J. Cell Biol.132, 755–767 (1996). ArticleCAS Google Scholar
Hunt, J. M. et al. Apost-docking role for synaptobrevin in synaptic vesicle docking. Neuron12, 1269–1279 (1994). ArticleCAS Google Scholar
Brodie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron15, 663–673 (1995). Article Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). ArticleCAS Google Scholar
Weisman, L. S. & Wickner, W. T. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science241, 589–591 (1988). ArticleADSCAS Google Scholar
Conradt, G., Shaw, J., Vida, T., Emr, S. & Wickner, W. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J. Cell Biol.119, 1469–1479 (1992). ArticleCAS Google Scholar
Ungermann, C. & Wickner, W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex disassembly, docking and fusion. EMBO J.17, 3269–3276 (1998). ArticleCAS Google Scholar
Xu, X., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell93, 1125–1134 (1998). ArticleCAS Google Scholar
Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol.136, 307–317 (1997). ArticleCAS Google Scholar
Conradt, B., Haas, A. & Wickner, W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J. Cell Biol.126, 99–110 (1994). ArticleCAS Google Scholar
Haas, A., Conradt, B. & Wickner, W. G-protein ligands inhibit in vitro reactions of vacuole inheritance. J. Cell Biol.126, 87–97 (1994). ArticleCAS Google Scholar
Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) precedes docking and fusion of yeast vacuoles. Cell85, 83–94 (1996). ArticleCAS Google Scholar
Sato, K. & Wickner, W. Functional reconstitution of Ypt7 GTPase and vacuolar SNARE complex. Science281, 700–702 (1998). ArticleADSCAS Google Scholar
Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. & Haas, A. Homotypic vacuolar fusion mediated by v- and t-SNAREs. Nature387, 199–202 (1997). ArticleADSCAS Google Scholar
Lowe, M., Nakamura, N. & Warren, G. Golgi division and membrane traffic. Trends Cell Biol.8, 40–44 (1998). ArticleCAS Google Scholar
Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell83, 423–432 (1995). ArticleCAS Google Scholar
Blasi, J. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature365, 160–163 (1993). ArticleADSCAS Google Scholar
Jahn, R. & Niemann, H. Molecular mechanisms of clostridial neurotoxins. Ann. NY Acad. Sci.733, 245–255 (1994). ArticleADSCAS Google Scholar
Martin, T. F. J. Stages of regulated exocytosis. Trends Cell Biol.7, 271–276 (1997). ArticleCAS Google Scholar
Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature396, 575–580 (1998). ArticleADSCAS Google Scholar
Haas, A. Aquantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci.17, 283–294 (1995). Article Google Scholar
Haas, A. & Wickner, W. Homotypic vacuolar fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF). EMBO J.15, 3296–3305 (1996). ArticleCAS Google Scholar
Xu, Z. & Wickner, W. Thioredoxin is required for vacuole inheritance in S. cerevisiae. J. Cell Biol.132, 787–794 (1996). ArticleCAS Google Scholar