Defining the functions of trans-SNARE pairs (original) (raw)

References

  1. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 (1997).
    Article ADS CAS Google Scholar
  2. Holthuis, J. C. M., Nichols, B. J., Druvakumar, S. & Pelham, H. R. B. Two syntaxin homologues in the TGN/endosomal system in yeast. EMBO J. 17, 113–126 (1998).
    Article CAS Google Scholar
  3. Ungermann, C., Nichols, B. J., Pelham, H. R. B. & Wickner, W. Avacuolar v-t-SNARE complex, the predominant form in vivo and on isolated organelles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).
    Article CAS Google Scholar
  4. Rothman, J. E. Mechanisms of intracellular membrane fusion Nature 372, 55–63 (1994).
    Article ADS CAS Google Scholar
  5. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191–193 (1994).
    Article ADS CAS Google Scholar
  6. Hay, J. C. & Scheller, R. SNAREs and NSF in targeted membrane fusion. Curr. Opin. Cell Biol. 9, 505–512 (1997).
    Article CAS Google Scholar
  7. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).
    Article CAS Google Scholar
  8. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).
    Article CAS Google Scholar
  9. Pfeffer, S. R. Transport vesicle docking: SNARE and associates. Annu. Rev. Cell Biol. Dev. Biol. 12, 441–461 (1996).
    Article CAS Google Scholar
  10. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).
    Article CAS Google Scholar
  11. Cao, X., Ballew, N. & Barlow, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).
    Article CAS Google Scholar
  12. Sapperstein, S. K., Lupashin, V. V., Schmitt, H. D. & Waters, M. G. Assembly of the ER to Golgi SNARE complex requires Uso1p. J. Cell Biol. 132, 755–767 (1996).
    Article CAS Google Scholar
  13. Hunt, J. M. et al. Apost-docking role for synaptobrevin in synaptic vesicle docking. Neuron 12, 1269–1279 (1994).
    Article CAS Google Scholar
  14. Brodie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).
    Article Google Scholar
  15. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).
    Article CAS Google Scholar
  16. Weisman, L. S. & Wickner, W. T. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science 241, 589–591 (1988).
    Article ADS CAS Google Scholar
  17. Conradt, G., Shaw, J., Vida, T., Emr, S. & Wickner, W. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J. Cell Biol. 119, 1469–1479 (1992).
    Article CAS Google Scholar
  18. Ungermann, C. & Wickner, W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex disassembly, docking and fusion. EMBO J. 17, 3269–3276 (1998).
    Article CAS Google Scholar
  19. Xu, X., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93, 1125–1134 (1998).
    Article CAS Google Scholar
  20. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).
    Article CAS Google Scholar
  21. Conradt, B., Haas, A. & Wickner, W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. J. Cell Biol. 126, 99–110 (1994).
    Article CAS Google Scholar
  22. Haas, A., Conradt, B. & Wickner, W. G-protein ligands inhibit in vitro reactions of vacuole inheritance. J. Cell Biol. 126, 87–97 (1994).
    Article CAS Google Scholar
  23. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) precedes docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).
    Article CAS Google Scholar
  24. Sato, K. & Wickner, W. Functional reconstitution of Ypt7 GTPase and vacuolar SNARE complex. Science 281, 700–702 (1998).
    Article ADS CAS Google Scholar
  25. Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. & Haas, A. Homotypic vacuolar fusion mediated by v- and t-SNAREs. Nature 387, 199–202 (1997).
    Article ADS CAS Google Scholar
  26. Lowe, M., Nakamura, N. & Warren, G. Golgi division and membrane traffic. Trends Cell Biol. 8, 40–44 (1998).
    Article CAS Google Scholar
  27. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).
    Article CAS Google Scholar
  28. Blasi, J. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163 (1993).
    Article ADS CAS Google Scholar
  29. Jahn, R. & Niemann, H. Molecular mechanisms of clostridial neurotoxins. Ann. NY Acad. Sci. 733, 245–255 (1994).
    Article ADS CAS Google Scholar
  30. Martin, T. F. J. Stages of regulated exocytosis. Trends Cell Biol. 7, 271–276 (1997).
    Article CAS Google Scholar
  31. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998).
    Article ADS CAS Google Scholar
  32. Haas, A. Aquantitative assay to measure homotypic vacuole fusion in vitro. Methods Cell Sci. 17, 283–294 (1995).
    Article Google Scholar
  33. Haas, A. & Wickner, W. Homotypic vacuolar fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF). EMBO J. 15, 3296–3305 (1996).
    Article CAS Google Scholar
  34. Xu, Z. & Wickner, W. Thioredoxin is required for vacuole inheritance in S. cerevisiae. J. Cell Biol. 132, 787–794 (1996).
    Article CAS Google Scholar

Download references