A critical window for cooperation and competition among developing retinotectal synapses (original) (raw)

References

  1. Goodman, C. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).
    Article Google Scholar
  2. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
    Article ADS CAS Google Scholar
  3. Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).
    Article CAS Google Scholar
  4. LeVay, S., Hubel, D. H. & Wiesel, T. N. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).
    Article CAS Google Scholar
  5. Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).
    Article CAS Google Scholar
  6. Shatz, C. J. & Stryker, M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87–89 (1988).
    Article ADS CAS Google Scholar
  7. Stryker, M. P. & Strickland, S. L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Ophthalmol. Vis. Sci. 25 (Suppl.), 278 (1984).
    Google Scholar
  8. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).
    Article ADS CAS Google Scholar
  9. Udin, S. B. & Fawcett, J. W. Formation of topographic maps. Annu. Rev. Neurosci. 11, 289–297 (1990).
    Article Google Scholar
  10. Holt, C. E. & Harris, W. A. Position, guidance and mapping in the developing visual system. J. Neurobiol. 24, 1400–1422 (1993).
    Article CAS Google Scholar
  11. Harris, W. A. The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. J. Comp. Neurol. 194, 303–317 (1980).
    Article CAS Google Scholar
  12. Reh, T. A. & Constantine-Paton, M. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J. Neurosci. 5, 1132–1143 (1985).
    Article CAS Google Scholar
  13. Schmidt, J. T. & Buzzard, M. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. J. Neurobiol. 24, 384–399 (1993).
    Article CAS Google Scholar
  14. Brickley, S. G., Dawes, E. A., Keating, M. J. & Grant, S. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum. J. Neurosci. 18, 1491–1504 (1998).
    Article CAS Google Scholar
  15. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).
    Article CAS Google Scholar
  16. Rae, J., Cooper, K., Gates, P. & Watsky, M. Low access resistance perforated patch recordings using amphotericin B. J. Neurosci. Methods 37, 15–26 (1991).
    Article CAS Google Scholar
  17. Wu, G.-Y., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).
    Article ADS CAS Google Scholar
  18. Hickmott, P. W. & Constantine-Paton, M. The contribution of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum. J. Neurosci. 13, 4339–4353 (1993).
    Article CAS Google Scholar
  19. Sakaguchi, D. S. & Murphey, R. K. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. J. Neurosci. 5, 3228–3245 (1985).
    Article CAS Google Scholar
  20. O'Rourke, N. A. & Fraser, S. E. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. Neuron 5, 159–171 (1990).
    Article CAS Google Scholar
  21. Lo, Y. & Poo, M.-m. Activity-dependent synaptic competition in vitro: Heterosynaptic suppression of developing synapses. Science 254, 1019–1022 (1991).
    Article ADS CAS Google Scholar
  22. Cline, H. T., Debski, E. & Constantine-Paton, M. N-methyl-D-aspartate receptor antagonists desegregates eye-specific stripes. Proc. Natl Acad. Sci. USA 84, 4342–4345 (1987).
    Article ADS CAS Google Scholar
  23. Cline, H. T. & Constantine-Paton, M. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron 3, 413–426 (1989).
    Article CAS Google Scholar
  24. Schmidt, J. T. Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish: common sensitive period and sensitivity to NMDA blockers. J. Neurosci. 10, 233–246 (1990).
    Article CAS Google Scholar
  25. Bliss, T. V. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    Article ADS CAS Google Scholar
  26. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).
    Article CAS Google Scholar
  27. Artola, A. & Singer, W. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652 (1987).
    Article ADS CAS Google Scholar
  28. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H. & Toyama, K. Long-term potentiation of synaptic transmission in kitten visual cortex. J. Neurophysiol. 59, 124–141 (1988).
    Article CAS Google Scholar
  29. Bear, M. F., Press, W. A. & Connors, B. W. Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J. Neurophysiol. 67, 1–11 (1992).
    Article Google Scholar
  30. Hahm, J. O., Langdom, R. B. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568–570 (1991).
    Article ADS CAS Google Scholar
  31. Mooney, R., Madison, D. V. & Shatz, C. J. Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10, 815–825 (1993).
    Article CAS Google Scholar
  32. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
    Article CAS Google Scholar
  33. Magee, J. C. & Johnston, D. Asynaptically controlled, associative signal for hebbian plasticity in hippocampal neuron. Science 275, 209–213 (1997).
    Article CAS Google Scholar
  34. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures J. Physiol. 507, 237–247 (1998).
    Article CAS Google Scholar
  35. Naveu, D. & Zucker, R. S. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16, 619–629 (1996).
    Article Google Scholar
  36. Hebb, D. H. The Organization of Behavior (Wiley, New York, (1949)).
    Google Scholar
  37. Stent, G. S. Aphysiological mechanism for Hebb's postulate of learning. Proc. Natl Acad. Sci. USA 70, 997–1001 (1973).
    Article ADS CAS Google Scholar
  38. Willshaw, D. J. & Von der Malsburg, C. How patterned neural connections can be set up by self-organization. Proc. R. Soc. Lond. B 194, 431–445 (1976).
    Article ADS CAS Google Scholar
  39. Bear, M. F., Cooper, L. N. & Ebner, F. F. Aphysiological basis for a theory of synaptic modification. Science 237, 42–48 (1987).
    Article ADS CAS Google Scholar
  40. Miller, K. D., Keller, J. B. & Stryker, M. P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).
    Article ADS CAS Google Scholar
  41. Constantine-Paton, M., Cline, H. T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).
    Article CAS Google Scholar
  42. Brown, T. H., Kairiss, E. W. & Keenan, C. L. Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511 (1990).
    Article CAS Google Scholar
  43. Frégnac, Y., Burke, J. P., Smith, D. & Friedlander, M. J. Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex. J. Neurophysiol. 71, 1403–1421 (1994).
    Article Google Scholar
  44. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).
    Article ADS CAS Google Scholar
  45. Gerstner, W. & Abbott, L. F. Learning navigational maps through potentiation and modulation of hippocampal place cells. J. Comp. Neurosci. 4, 79–94 (1997).
    Article CAS Google Scholar
  46. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).
    Article ADS CAS Google Scholar
  47. Wong, R. O., Chernjavsky, A., Smith, S. J. & Shatz, C. J. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995).
    Article ADS CAS Google Scholar
  48. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).
    Article ADS CAS Google Scholar
  49. Colman, H., Nabekura, J. & Lichtman, J. W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).
    Article CAS Google Scholar
  50. Nieuwkoop, P. D. & Faber, J. _Normal Table of Xenopus laevis_2nd edn (North Holland, Amsterdam, (1967)).
    Google Scholar

Download references