Hall, M. & Peters, G. Genetic alterations of cyclin, cyclin-dependent kinases, and cdk inhibitors in human cancer. Adv. Cancer Res.68, 68–108 (1996). Google Scholar
Weinber, R. A. The retinoblastoma protein and cell cycle control. Cell81, 323–330 (1995). Article Google Scholar
Hunter, T. & Pines, J. Cyclins and cancer II: cyclin D and cdk inhibitors come of age. Cell79, 573–582 (1994). ArticleCASPubMed Google Scholar
Serrano, M., Hannon, G. J. & Beach, D. Anew regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticleADSCASPubMed Google Scholar
Kamb, A. et al. Acell cycle regulator potentially involved in genesis of many tumor types. Science264, 436–440 (1994). ArticleADSCASPubMed Google Scholar
Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature368, 753–756 (1994). ArticleADSCASPubMed Google Scholar
Caldas, C. et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genet.8, 27–32 (1994). ArticleCASPubMed Google Scholar
Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature Genet.8, 15–21 (1994). ArticleCASPubMed Google Scholar
Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet.8, 23–26 (1994). ArticleCASPubMed Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). ArticleCASPubMed Google Scholar
Koh, J., Enders, G. H., Dynlacht, B. D. & Harlow, E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature375, 506–510 (1995). ArticleADSCASPubMed Google Scholar
Serrano, M., Gomez-Lahoz, E., DePinho, R. A., Beach, D. & Bar-Sagi, D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science267, 249–252 (1995). ArticleADSCASPubMed Google Scholar
Yang, R., Gombart, A. F., Serrano, M. & Koeffler, H. P. Mutational effects on the p16INK4a tumor supressor protein. Cancer Res.55, 2503–2506 (1995). CASPubMed Google Scholar
Ranade, K. et al. Mutations associated with familial melanoma impair p16INK4 function. Nature Genet.10, 114–116 (1995). ArticleCASPubMed Google Scholar
Parry, D. & Peters, G. Temperature-sensitive mutants of p16_CDKN2_ associated with familial melanoma. Mol. Cell. Biol.16, 3844–3852 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zhang, B. & Peng, Z. Defective folding of mutant p16(INK4) proteins encoded by tumor-derived alleles. J. Biol. Chem.271, 28734–28737 (1996). ArticleCASPubMed Google Scholar
Arap, W., Knudsen, E. S., Wang, J. Y., Cavenee, W. K. & Huang, H. J. Point mutations can inactivate in vitro and in vivo activities of p16(INK4a)/CDKN2A in human glioma. Oncogene14, 603–609 (1997). ArticleCASPubMed Google Scholar
Wolfel, T. et al. Ap16_INK4a_-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995). ArticleADSCASPubMed Google Scholar
Zuo, L. et al. Germline mutations in the p16_INK4a_ binding domain of CDK4 in familial melanoma. Nature Genet.12, 97–99 (1996). ArticleADSCASPubMed Google Scholar
Hannon, G. J. & Beach, D. p15_INK4B_ is a potential effector of TGF β-induced cell cycle arrest. Nature371, 257–261 (1994). ArticleADSCASPubMed Google Scholar
Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A. & Sherr, C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol.15, 2672–2681 (1995). ArticleCASPubMedPubMed Central Google Scholar
Guan, K. L. et al. Isolation and characterization of p19_INK4d_, a p16-related inhibitor specific to CDK6 and CDK4. Mol. Biol. Cell7, 57–70 (1996). ArticleCASPubMedPubMed Central Google Scholar
Xiong, Y., Zhang, H. & Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev.7, 1572–1583 (1993). ArticleCASPubMed Google Scholar
Li, Y., Nichols, M. A., Shay, J. W. & Xiong, Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res.54, 6078–6082 (1994). CASPubMed Google Scholar
Parry, D., Bates, S., Mann, D. J. & Peters, G. Lack of cyclin D–Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. EMBO J.14, 503–511 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lukas, J. et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature375, 503–506 (1995). ArticleADSCASPubMed Google Scholar
Russo, A. A., Jeffrey, P. D., Patten, A. K., Massagué, J. & Pavletich, N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A–Cdk2 complex. Nature382, 325–331 (1996). ArticleADSCASPubMed Google Scholar
Knighton, D. R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science253, 407–413 (1991). ArticleADSCASPubMed Google Scholar
Gorina, S. & Pavletich, N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science274, 1001–1005 (1996). ArticleADSCASPubMed Google Scholar
Luh, F. Y. et al. Structure of the cyclin-dependent kinase inhibitor p19Ink4d. Nature389, 999–1003 (1997). ArticleADSCASPubMed Google Scholar
Byeon, I. et al. Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell1, 421–431 (1998). ArticleCASPubMed Google Scholar
Venkataramani, R., Swaminathan, K. & Marmostein, R. Crystal structure of the CDK4/6 inhibitory protein p18_INK4c_ provides insights into ankyrin-like repeat structure/function and tumor-derived p16_INK4_ mutations. Nature Struct. Biol.5, 74–81 (1998). ArticleCASPubMed Google Scholar
Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of cyclin A–CDK2 ocmplex. Nature376, 313–320 (1995). ArticleADSCASPubMed Google Scholar
Russo, A., Jeffrey, P. D. & Pavletich, N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nature Struct. Biol.3, 696–700 (1996). ArticleCASPubMed Google Scholar
Coleman, K. G. et al. Identification of CDK4 sequences involved in cyclin D1 and p16 binding. J. Biol. Chem.272, 18869–18874 (1997). ArticleCASPubMed Google Scholar
Brotherton, D. H. et al. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell cycle inhibitor p19INK4d. Nature395, 244–250 (1998). ArticleADSCASPubMed Google Scholar
Zoller, M. J., Nelson, N. C. & Taylor, S. S. Affinity labeling of cAMP-dependent protein kinase with p-Fluorosulfonylbenzoyl adenosine. J. Biol. Chem.256, 10837–10842 (1981). CASPubMed Google Scholar
Atherton-Fessler, S., Parker, L. L., Geahlen, R. L. & Piwnica-Worms, H. Mechanisms of p34cdc2 regualtion. Mol. Cell. Biol.13, 1675–1685 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fahraeus, R., Paramio, J. M., Ball, K. L., Lain, S. & Lane, D. P. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr. Biol.6, 84–91 (1996). ArticleCASPubMed Google Scholar
Gerber, M. R., Farrell, A., Deshaies, R. J., Herskowitz, I. & Morgan, D. O. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc. Natl Acad. Sci. USA92, 4651–4655 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev.10, 1491–1502 (1996). ArticleCASPubMed Google Scholar
Reynisdottir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev.9, 1831–1845 (1995). ArticleCASPubMed Google Scholar
Meyerson, M. & Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell. Biol.14, 2077–2086 (1994). ArticleCASPubMedPubMed Central Google Scholar
Collaborative Computational Project, Number4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). ArticlePubMed Google Scholar
Brunger, A. T. X-PLOR, a System for Crystallography and NMR(Yale Univ. Press, New Haven, CT, 1991). Google Scholar
Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr.24, 946–950 (1991). Article Google Scholar
Merrit, E. A. & Murphy, M. E. Raster3D Version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994). Article Google Scholar