Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution (original) (raw)
References
Südhof, T. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature375, 645–653 (1995). ArticleADSPubMed Google Scholar
Hanson, P. I., Heuser, J. E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes. Curr. Opin. Neurobiol.7, 310–315 (1997). ArticleCASPubMed Google Scholar
Jahn, R. & Niemann, H. Molecular mechanisms of clostridial neurotoxins. Ann. NY Acad. Sci.733, 245–255 (1994). ArticleADSCASPubMed Google Scholar
Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. Aprotein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). ArticlePubMed Google Scholar
Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J.14(10), 2317–2325 (1995). ArticlePubMed Central Google Scholar
Fasshauer, D., Otto, H., Eliason, W. K., Jahn, R. & Brunger, A. T. Structural changes are associated with SNARE-complex formation. J. Biol. Chem.242, 28036–28041 (1997). Article Google Scholar
Nichols, B. J., Ungerman, C., Pelham, H. R. B., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Proc. Natl Acad. Sci. USA387, 199–202 (1997). CAS Google Scholar
Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA94, 6197–6201 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl Acad. Sci. USA85, 7852–7856 (1988). ArticleADSCASPubMedPubMed Central Google Scholar
Hanson, P. I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin. J. Biol. Chem.270, 16955–16961 (1995). ArticleCASPubMed Google Scholar
Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE-complex sufficient for reversible assembly and disassembly. Biochemsitry37, 10345–10353 (1998). Article Google Scholar
Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science254, 51–58 (1991). ArticleADSCASPubMed Google Scholar
Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complex visualized by quick-freeze/deep-etch electron microscopy. Cell90, 523–525 (1997). ArticleCASPubMed Google Scholar
Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell. Biol.109, 3039–3052 (1989). ArticleCASPubMed Google Scholar
Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. Aswitch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science262, 1401–1407 (1993). ArticleADSCASPubMed Google Scholar
Lupas, A., van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science252, 1162–1164 (1991). ArticleADSCASPubMed Google Scholar
Crick, F. H. C. The packing of α-helices: simple coiled coils. Acta Crystallogr.6, 689–697 (1953). ArticleCAS Google Scholar
Wolf, E., Kim, P. S. & Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci.6, 1179–1189 (1997). ArticleCASPubMedPubMed Central Google Scholar
Weimbs, T., Mostov, K. E., Low, S. H. & Hofmann, K. Amodel for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol.8, 260–262 (1998). ArticleCASPubMed Google Scholar
Hao, J. C., Salem, N., Peng, X. R., Kelly, R. B. & Bennett, M. K. Effect of mutations in vesicle-associated membrane protein (VAMP) on the assembly of multimeric protein complexes. J. Neurosci.17, 1596–1603 (1997). ArticleCASPubMedPubMed Central Google Scholar
Saifee, O., Wei, L. & Nonet, M. L. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol. Biol. Cell9, 1235–1239 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A. T. Astructural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem.272, 4582–4590 (1997). ArticleCASPubMed Google Scholar
Kee, Y., Lin, R. C., Hsu, S. C. & Scheller, R. H. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron14, 991–998 (1995). ArticleCASPubMed Google Scholar
Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J.13, 5051–5061 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol.3, 842–848 (1996). ArticleCASPubMed Google Scholar
Chan, D. c., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell89, 263–273 (1997). ArticleCASPubMed Google Scholar
Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature387, 426–430 (1997). ArticleADSCASPubMed Google Scholar
Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein influenza virus at 3 Å resolution. Nature289, 366–373 (1981). ArticleADSCASPubMed Google Scholar
Rice, L. M., Brennwald, P. & Brunger, A. T. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett.415, 49–55 (1997). ArticleCASPubMed Google Scholar
Bernard, A. & Payton, M. Fermentation and growth of Escherichia coli for optimal protein production. Curr. Protocol. Protein Sci.5.3, 1–18 (1995). Google Scholar
Leahy, D. J., Erickson, H. P., Aukhil, I., Joshi, P. & Hendrickson, W. A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins19, 48–54 (1994). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1998). Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCASPubMed Google Scholar
Bricogne, G. Bayesian statistical viewpoint on structure determination: basic concepts and examples. Methods Enzymol.276, 361–423 (1997). ArticleCASPubMed Google Scholar
Phillips, J. C. & Hodgson, K. O. The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Crystallogr. A36, 856–864 (1980). ArticleADS Google Scholar
Burling, F. T., Weis, W. I., Flaherty, K. M. & Brunger, A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science271, 72–77 (1996). ArticleADSCASPubMed Google Scholar
Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol.115, 90–112 (1985). ArticleCASPubMed Google Scholar
Zhang, K. Y. J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A46, 41–46 (1990). Article Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). ArticlePubMed Google Scholar
Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins19, 277–290 (1994). ArticleCASPubMed Google Scholar
Hendrickson, W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol.115, 252–270 (1985). ArticleCASPubMed Google Scholar
Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. Incorporation of prior phase information strengthens maximum likelihood structural refinement. Acta Crystallogr. D(in the press).
Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986). Article Google Scholar
Brunger, A. T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature355, 472–474 (1992). ArticleADSCASPubMed Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCASPubMed Google Scholar
Esnouf, M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model15, 132–134 (1997). ArticleCASPubMed Google Scholar
Jorgensen, W. L. & Rives, J. T. The OPLS potential functions for protein energy minimizations for crystals of cyclic peptide and crambin. J. Am. Chem. Soc.110, 1657–1666 (1988). ArticleCASPubMed Google Scholar
Malashkevich, V. N., Chan, D. C., Chutkowski, C. T. & Kim, P. Crystal structure of the simian immunodeficiency virus (SIV) gp41core: Conserved helical interactions underlie the broad inhibitory activity of gp41peptides. Proc. Natl Acad. Sci. USA95, 9134–9139 (1998). ArticleADSCASPubMedPubMed Central Google Scholar