Separate body- and world-referenced representations of visual space in parietal cortex (original) (raw)

References

  1. Andersen, R. A., Snyder, L. H., Li, C. S. & Stricanne, B. Coordinate transformations in the representation of spatial information. Curr. Opin. Neurobiol. 3, 171–176 (1993).
    Article CAS Google Scholar
  2. Andersen, R. A. & Mountcastle, V. B. The influence of the angle of gaze upon the excitability of the light sensitive neurons of the posterior parietal cortex. J. Neurosci. 3, 532–548 (1983).
    Article CAS Google Scholar
  3. Anderson, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).
    Article ADS Google Scholar
  4. Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 385, 232–235 (1995).
    Article ADS Google Scholar
  5. Zipser, D. & Andersen, R. A. Aback-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).
    Article ADS CAS Google Scholar
  6. Salinas, E. & Abbott, L. F. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).
    Article CAS Google Scholar
  7. Pouget, A. & Sejnowski, T. J. Spatial representations in the parietal cortex may use basis functions. Adv. Neural Inf. Process. 7, 157–164 (1995).
    Google Scholar
  8. Duhamel, J.-R., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).
    Article ADS CAS Google Scholar
  9. Von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–475 (1950). (In German.)
    Article ADS Google Scholar
  10. Mergner, T., Nardi, G. L., Becker, W. & Deecke, L. The role of canal–neck interaction for the perception of horizontal trunk and head rotation. Exp. Brain Res. 49, 198–208 (1983).
    Article CAS Google Scholar
  11. Roll, R., Velay, J. L. & Roll, J. P. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp. Brain Res. 85, 423–431 (1991).
    Article CAS Google Scholar
  12. Karnath, H.-O., Sievering, D. & Fetter, M. The interactive contribution of neck muscle proprioception and vestibular stimulation to subjective “straight ahead” orientation in man. Exp. Brain Res. 101, 140–146 (1994).
    Article CAS Google Scholar
  13. Jones, G. M. & Milsum, J. H. Spatial and dynamic aspects of visual fixation. IEEE Trans. Biomed. Eng. 12(2), 54–62 (1965).
    Article Google Scholar
  14. Robinson, D. A. in Basic Mechanisms of Ocular Motility and their Clinical Implications (eds Lennerstrand, G. & Bach-y-Rita, P.) 337–374 (Pergamon, Oxford, (1975)).
  15. Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined sub-divisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).
    Article CAS Google Scholar
  16. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties. J. Neurophysiol. 66, 1095–1108 (1991).
    Article CAS Google Scholar
  17. Shibutani, H., Sakata, H. & Hyvarinen, J. Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of monkey. Exp. Brain Res. 55, 1–8 (1984).
    Article CAS Google Scholar
  18. Thier, P. & Andersen, R. A. Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc. Natl Acad. Sci. USA 93, 4962–4967 (1996)
    Article ADS CAS Google Scholar
  19. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).
    Article ADS CAS Google Scholar
  20. Freedman, E. G. & Sparks, D. L. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J. Neurophysiol. 78, 1669–1690 (1997).
    Article CAS Google Scholar
  21. Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographic learning in man. Cereb. Cortex 6, 823–829 (1996).
    Article CAS Google Scholar
  22. Squire, L. R. Memory and the hippocampus: a synthesis of findings from rat, monkey and humans. Psychol. Rev. 99, 195–231 (1992).
    Article CAS Google Scholar
  23. McNaughton, B. L., Barnes, C. A. & O'Keefe, J. The contributions of position, direction and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).
    Article CAS Google Scholar
  24. Baylis, G. C. & Moore, B. O. Hippocampal lesions impair spatial response selection in the primate. Exp. Brain Res. 98, 110–118 (1994).
    Article CAS Google Scholar
  25. Rolls, E. T. & O'Mara, S. M. View-responsive neurons in the primate hippocampal complex. Hippocampus 5, 409–424 (1995).
    Article CAS Google Scholar
  26. Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).
    Article Google Scholar
  27. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).
    Article CAS Google Scholar
  28. Fredrickson, J. M., Schwarz, D. & Kornhumber, H. H. Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of cat. Acta Otolaryngol. 61, 168–188 (1966).
    Article CAS Google Scholar

Download references