Human β-nerve growth factor gene sequence highly homologous to that of mouse (original) (raw)

Nature volume 303, pages 821–825 (1983)Cite this article

Abstract

Nerve growth factor (NGF) is thought to have a profound effect on the development and maintenance of sympathetic and embryonic sensory neurones (see refs 1–3 for review). NGF activity isolated from the male mouse submaxillary gland (MSG) consists of three types of subunits, α, β and γ, which specifically interact to form a 7S, ∼130,000-molecular weight (_M_r) complex. The 7S complex contains two identical 118-amino acid _β_-chains, which are solely responsible for the nerve growth-stimulating activity of NGF. While NGF is found in almost all vertebrates4, most research has focused on murine NGF, as the mouse male submaxillary gland contains higher levels of this polypeptide than other tissues4. Even so, _β_-NGF comprises only ∼0.1% of the protein in this small gland, which has made the study of this polypeptide difficult. The amino acid sequence of the mouse NGF _β_-chain has been determined5 and some information has been obtained regarding the size of a mouse precursor molecule6, pro-_β_-NGF, but little was known about the structure and relatedness of _β_-NGF from other vertebrates. Here we describe the isolation of mouse _β_-NGF complementary DNA (cDNA) and present its nucleotide sequence, which predicts a prepro-_β_-NGF molecule of _M_r 27,000 (27K) and a pro-_β_-NGF molecule of _M_r 25K. We have used the mouse _β_-NGF cDNA clone to isolate the human _β_-NGF gene, the coding regions of which are highly homologous to the mouse prepro-_β_-NGF nucleotide and amino acid sequences.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Levi-Montalcini, R. A. Rev. Neurosci. 5, 341–362 (1982).
    Article CAS Google Scholar
  2. Yanker, B. A. & Shooter, E. M. A. Rev. Biochem. 51, 845–868 (1982).
    Article Google Scholar
  3. Bradshaw, R. A. A. Rev. Biochem. 47, 191–216 (1978).
    Article CAS Google Scholar
  4. Harper, G. P. & Thoenin, H. J. Neurochem. 34, 893–903 (1980).
    Article CAS Google Scholar
  5. Angeletti, R. H., Mercanti, D. & Bradshaw, R. A. Biochemistry 12, 90–100 (1973).
    Article CAS Google Scholar
  6. Berger, E. A. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 74, 3647–3651 (1977).
    Article ADS CAS Google Scholar
  7. Ishii, D. N. & Shooter, E. M. J. Neurochem. 25, 843–851 (1975).
    Article CAS Google Scholar
  8. Crea, R. & Horn, T. Nucleic Acids Res. 8, 2331–2348 (1980).
    Article CAS Google Scholar
  9. Lehrach, H., Diamond, D., Wozney, J. M. & Boedtker, H. Biochemistry 16, 4743–4751 (1977).
    Article CAS Google Scholar
  10. Angeletti, R. H., Hermodson, M. A. & Bradshaw, R. A. Biochemistry 12, 100–115 (1973).
    Article CAS Google Scholar
  11. Noda, M. et al. Nature 295, 202–206 (1982).
    Article ADS CAS Google Scholar
  12. Kakidani, H. et al. Nature 298, 245–249 (1982).
    Article ADS CAS Google Scholar
  13. Nakanishi, S. et al. Nature 278, 423–427 (1979).
    Article ADS CAS Google Scholar
  14. Amara, S. G., Jonmas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).
    Article ADS CAS Google Scholar
  15. Smith, A. P., Varon, S. & Shooter, E. M. Biochemistry 7, 3259–3268 (1968).
    Article CAS Google Scholar
  16. Kozak, M. Nucleic Acids Res. 9, 5233–5252 (1981).
    Article CAS Google Scholar
  17. Blobel, G. et al. Soc. exp. Biol. Symp. 23, 9–36 (1979).
    Google Scholar
  18. Lingappa, V. R., Lingappa, J. R., Prasad, R., Ebner, K. B. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 75, 2338–2342 (1978).
    Article ADS CAS Google Scholar
  19. Lawn, R. M., Fritsch, E. F., Parker, R. C., Lake, G. B. & Maniatis, T. Cell 15, 1157–1163 (1978).
    Article CAS Google Scholar
  20. Southern, E. J. molec. Biol. 98, 503–517 (1975).
    Article CAS Google Scholar
  21. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).
    Article ADS CAS Google Scholar
  22. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).
    Article ADS CAS Google Scholar
  23. Tosi, M., Young, R. A., Hagenbuchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).
    Article CAS Google Scholar
  24. Sharp, P. A. Cell 23, 643–646 (1981).
    Article CAS Google Scholar
  25. Ullrich, A., Dull, T. J., Gray, A., Brosius, J. & Sures, I. Science 209, 612–615 (1980).
    Article ADS CAS Google Scholar
  26. Lomedico, P. et al. Cell 18, 545–556 (1979).
    Article CAS Google Scholar
  27. Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).
    Article ADS CAS Google Scholar
  28. Wickens, M. P., Buell, G. N. & Schimke, R. T. J. biol. Chem. 253, 2483–2495 (1978).
    CAS PubMed Google Scholar
  29. Wallace, B. et al. Nucleic Acids Res. 9, 879–894 (1981).
    Article CAS Google Scholar
  30. Taylor, J. M., Illmensee, R. & Summers, J. Biochim. biophys. Acta 4, 324–330 (1976).
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Molecular Biology, Genentech, Inc., 460 Point San Bruno Boulevard, South San Francisco, California, 94080, USA
    Axel Ullrich, Alane Gray, Cara Berman & Thomas J. Dull

Authors

  1. Axel Ullrich
  2. Alane Gray
  3. Cara Berman
  4. Thomas J. Dull

Rights and permissions

About this article

Cite this article

Ullrich, A., Gray, A., Berman, C. et al. Human _β_-nerve growth factor gene sequence highly homologous to that of mouse.Nature 303, 821–825 (1983). https://doi.org/10.1038/303821a0

Download citation