Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry (original) (raw)

Nature volume 320, pages 350–352 (1986)Cite this article

Abstract

Major trends of Quaternary global climate are reflected in the continental ice volume changes which have been reconstructed by oxygen-isotope analysis1,2. _δ_18O records from deep-sea sediments show that the net glacial build-up occurs relatively slowly3, but that the end of an ice age occurs quickly, in less than 10,000 yr, implying a nonlinear response4,5 to simple Milankovitch theory6. The latter observation suggests that the cause of the most recent deglaciation was the maximum in summer calorific radiation at the upper latitudes of the Northern Hemisphere centred around 11,000 yr ago, a view supported by early studies7. Later work has produced conflicting dates, the main source of confusion being problems with obtaining accurate and reliable dates. Here, by using accelerator mass spectrometry, we have measured 14C for various species of foraminifera to produce a reliable timescale for the oxygen-isotope record. Our results show that, at the end of the last ice age, continental ice sheets began to melt more than 4,000 yr before the Northern Hemisphere maximum of summer calorific radiation.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Emiliani, C. J. Geol. 63, 538–578 (1955).
    Article ADS CAS Google Scholar
  2. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).
    Article CAS Google Scholar
  3. CLIMAP. Science 191, 1131–1137 (1976).
  4. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).
    Article ADS CAS Google Scholar
  5. Imbrie, J. & Imbrie, J. Z. Science 207, 943–953 (1980).
    Article ADS CAS Google Scholar
  6. Milankovitch, M. R. Serbian Acad. (Beograd) Spec. Publ. 133 (1941).
  7. Broecker, W. S., Ewing, M. & Heezen, B. C. Science 258, 429–448 (1960).
    Google Scholar
  8. Duplessy, J. C., Delibrias, G., Turon, J. L., Pujol, C. & Duprat, J. Palaeogeogr., Palaeo-climatol., Palaeoecol. 35, 121–144 (1981).
    Article ADS CAS Google Scholar
  9. Ruddiman, W. F. & Duplessy, J. C. Quat. Res. 23, 1–17 (1985).
    Article Google Scholar
  10. Berger, W. H. Sver. geol. Unders. Afh. 76 (7c), 270–280 (1982).
    Google Scholar
  11. Mix, A. C. & Ruddiman, W. F. Quat. Res. (in the press).
  12. Berger, W. H., Killingly, J. S., Metzler, C. V. & Vincent, E. Quat. Res. 23, 258–271 (1985).
    Article CAS Google Scholar
  13. Sarnthein, M., Erlenkeuser, H. & Zahn, R. Bull. Inst. geol. Basin d'Aquitaine, Bordeaux 31, 393–407 (1982).
    Google Scholar
  14. Pujol, C. thesis, Univ. Bordeaux 1 (1980).
  15. Ruddiman, W. F. & Mclntyre, A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35, 145–214 (1981).
    Article CAS Google Scholar
  16. Labeyrie, L. D. & Duplessy, J. C. Palaeogeogr., Palaeoclimatol, Palaeoecol. 50, 217–240 (1985).
    CAS Google Scholar
  17. Arnold, M., Lesueur, R., Maurice, P. & Duplessy, J.C. 3rd int. Symp. Accelerator Mass Spectrometry: AMS '84, Zurich (1984).
  18. Vogel, J. S., Southon, J. R., Nelson, D. E. & Brown, T. A. Nucl. Instrum. Meth. 223, 289–293 (1984).
    Article Google Scholar
  19. Beukens, R. P. & Lee, H. W. Symp. Accelerator Mass Spectrometry, Proc. Argonne National Lab. ANL/PHY-81-ln, 416–425 (1981).
  20. Andree, M. et al. Nuclear Instruments and Methods in Physics Research B5, 340–345 (1984).
    Article Google Scholar
  21. Berner, W., Stauffer, B. & Oeschger, H. Radiocarbon 22, 227–235 (1980).
    Article CAS Google Scholar
  22. Delmas, R. J., Ascencio, J-M & Legrand, M. Nature 284, 155–157 (1980).
    Article ADS CAS Google Scholar
  23. Shackleton, N. J. & Pisias, N. G. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 303–317 (Am. Geophys. Un., Washington, DC, 1985).
    Google Scholar
  24. Paterson, W. S. B. Rev. Geophys. Space Phys. 10, 885–917 (1972).
    Article ADS Google Scholar
  25. Grousset, F. & Duplessy, J. C. Mar. Geol. 52, M11–M17 (1983).
    Article Google Scholar
  26. Denton, G. H. & Hughes, T. The Last Great Ice Sheets (Wiley-Interscience, New York, 1981).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Centre des Faibles Radioactivités, Laboratoire mixte CNRS-CEA, F-91190, Gif-sur-Yvette, France
    Jean-Claude Duplessy, Maurice Arnold, Pierre Maurice & Edouard Bard
  2. Département de Géologic et Océanographie, Université de Bordeaux 1, Avenue des Facultés, F-33405, Talence, France
    Josette Duprat & Jean Moyes

Authors

  1. Jean-Claude Duplessy
    You can also search for this author inPubMed Google Scholar
  2. Maurice Arnold
    You can also search for this author inPubMed Google Scholar
  3. Pierre Maurice
    You can also search for this author inPubMed Google Scholar
  4. Edouard Bard
    You can also search for this author inPubMed Google Scholar
  5. Josette Duprat
    You can also search for this author inPubMed Google Scholar
  6. Jean Moyes
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Duplessy, JC., Arnold, M., Maurice, P. et al. Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry.Nature 320, 350–352 (1986). https://doi.org/10.1038/320350a0

Download citation

This article is cited by