Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase (original) (raw)

References

  1. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae . Genetics 116, 9–22 (1987).
    CAS PubMed PubMed Central Google Scholar
  2. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol ll transcription. Cell 63, 751– 762 (1990).
    Article CAS PubMed Google Scholar
  3. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255–269 (1997).
    Article CAS PubMed Google Scholar
  4. Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997).
    Article CAS PubMed Google Scholar
  5. Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771–776 (1989).
    Article CAS PubMed Google Scholar
  6. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  7. Thompson, J. S., Ling, X. & Grunstein, M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369 , 245–247 (1994).
    Article ADS CAS PubMed Google Scholar
  8. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell 80, 583– 592 (1995).
    Article CAS PubMed Google Scholar
  9. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349–4356 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  10. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).
    Article CAS PubMed Google Scholar
  11. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1–20 (1997).
    Article Google Scholar
  12. Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).
    Article CAS PubMed Google Scholar
  13. Tsang, A. W. & Escalante-Semerena, J. C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273, 31788–31794 (1998).
    Article CAS PubMed Google Scholar
  14. Frye, R. A. Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).
    Article CAS PubMed Google Scholar
  15. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735– 745 (1999).
    Article CAS PubMed Google Scholar
  16. Yoshida, M., Kijima, M. & Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by Trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).
    CAS PubMed Google Scholar
  17. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).
    Article ADS CAS PubMed Google Scholar
  18. Banasik, M. & Ueda, K. Inhibitors and activators of ADP-ribosylation reactions. Mol. Cel. Biochem. 138, 185– 197 (1994).
    Article CAS Google Scholar
  19. Mills, K. D., Sinclair, D. A. & Guarente, L. _MEC1_-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).
    Article CAS PubMed Google Scholar
  20. Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).
    Article CAS PubMed Google Scholar
  21. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homolog: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24 , 4639–4648 (1998).
    Article Google Scholar
  22. Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900– 903 (1997).
    Article ADS CAS PubMed Google Scholar
  23. Adamietz, P. & Rudolph, A. ADP-ribosylation of nuclear proteins in vivo: identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH7974 cells. J. Biol. Chem. 259, 6841–6846 (1984).
    CAS PubMed Google Scholar
  24. Kreimeyer, A., Wielckens, K., Adamietz, P. & Hilz, H. DNA repair-associated ADP-ribosylation in vivo: modification of histone H1 differs from that of the principal acceptor proteins. J. Biol. Chem. 259, 890–896 ( 1984).
    CAS PubMed Google Scholar
  25. Pero, R. W., Holmgren, K. & Persson, L. Gamma-radiation induced ADP-ribosyltransferase activity and mammalian longevity. Mutat. Res. 142, 69–73 (1985).
    Article CAS PubMed Google Scholar
  26. Meyer, T. & Hilz, H. Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resident hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur. J. Biochem 155, 157–165 ( 1986).
    Article CAS PubMed Google Scholar
  27. Muller, I., Zimmermann, M., Becker, D. & Flomer, M. Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech. Ageing Dev. 12, 47–52 ( 1980).
    Article CAS PubMed Google Scholar
  28. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998).
    Article ADS CAS PubMed PubMed Central Google Scholar
  29. Weindruch, R. H., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity, and lifetime energy intake. J. Nutr. 116, 641–654 (1986).
    Article CAS PubMed Google Scholar
  30. Roth, G. S. Calorie restriction in primates: will it work and how will we know? J. Am. Geriatr. Soc. 47, 896–903 (1999).
    Article CAS PubMed Google Scholar

Download references