Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase (original) (raw)
References
Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae . Genetics116, 9–22 (1987). CASPubMedPubMed Central Google Scholar
Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol ll transcription. Cell63, 751– 762 (1990). ArticleCASPubMed Google Scholar
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev.11, 255–269 (1997). ArticleCASPubMed Google Scholar
Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev.11, 241–254 (1997). ArticleCASPubMed Google Scholar
Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell56, 771–776 (1989). ArticleCASPubMed Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). ArticleCASPubMedPubMed Central Google Scholar
Thompson, J. S., Ling, X. & Grunstein, M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature369 , 245–247 (1994). ArticleADSCASPubMed Google Scholar
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell80, 583– 592 (1995). ArticleCASPubMed Google Scholar
Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol.16, 4349–4356 (1996). ArticleCASPubMedPubMed Central Google Scholar
Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7, 592–604 (1993). ArticleCASPubMed Google Scholar
Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell91, 1–20 (1997). Article Google Scholar
Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev.9, 2888–2902 (1995). ArticleCASPubMed Google Scholar
Tsang, A. W. & Escalante-Semerena, J. C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem.273, 31788–31794 (1998). ArticleCASPubMed Google Scholar
Frye, R. A. Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun.260, 273–279 (1999). ArticleCASPubMed Google Scholar
Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell99, 735– 745 (1999). ArticleCASPubMed Google Scholar
Yoshida, M., Kijima, M. & Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by Trichostatin A. J. Biol. Chem.265, 17174–17179 (1990). CASPubMed Google Scholar
Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science272, 408–411 (1996). ArticleADSCASPubMed Google Scholar
Banasik, M. & Ueda, K. Inhibitors and activators of ADP-ribosylation reactions. Mol. Cel. Biochem.138, 185– 197 (1994). ArticleCAS Google Scholar
Mills, K. D., Sinclair, D. A. & Guarente, L. _MEC1_-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell97, 609–620 (1999). ArticleCASPubMed Google Scholar
Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97, 621–633 (1999). ArticleCASPubMed Google Scholar
Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homolog: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res.24 , 4639–4648 (1998). Article Google Scholar
Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature388, 900– 903 (1997). ArticleADSCASPubMed Google Scholar
Adamietz, P. & Rudolph, A. ADP-ribosylation of nuclear proteins in vivo: identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH7974 cells. J. Biol. Chem.259, 6841–6846 (1984). CASPubMed Google Scholar
Kreimeyer, A., Wielckens, K., Adamietz, P. & Hilz, H. DNA repair-associated ADP-ribosylation in vivo: modification of histone H1 differs from that of the principal acceptor proteins. J. Biol. Chem.259, 890–896 ( 1984). CASPubMed Google Scholar
Pero, R. W., Holmgren, K. & Persson, L. Gamma-radiation induced ADP-ribosyltransferase activity and mammalian longevity. Mutat. Res.142, 69–73 (1985). ArticleCASPubMed Google Scholar
Meyer, T. & Hilz, H. Production of anti-(ADP-ribose) antibodies with the aid of a dinucleotide-pyrophosphatase-resident hapten and their application for the detection of mono(ADP-ribosyl)ated polypeptides. Eur. J. Biochem155, 157–165 ( 1986). ArticleCASPubMed Google Scholar
Muller, I., Zimmermann, M., Becker, D. & Flomer, M. Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech. Ageing Dev.12, 47–52 ( 1980). ArticleCASPubMed Google Scholar
Weindruch, R. H., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity, and lifetime energy intake. J. Nutr.116, 641–654 (1986). ArticleCASPubMed Google Scholar
Roth, G. S. Calorie restriction in primates: will it work and how will we know? J. Am. Geriatr. Soc.47, 896–903 (1999). ArticleCASPubMed Google Scholar