The structures of HslU and the ATP-dependent protease HslU–HslV (original) (raw)

References

  1. Goldberg, A. L. & St. John, A. C. Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747–803 (1976).
    Article CAS Google Scholar
  2. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761 –807 (1992).
    Article CAS Google Scholar
  3. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  4. Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201 (1992).
    Article CAS Google Scholar
  5. Gottesman, S., Wickner, S. & Maurizi, M. R. Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815– 823 (1997).
    Article CAS Google Scholar
  6. Chuang, S. E., Burland, V., Plunkett, G., Daniels, D. L. & Blattner, F. R. Sequence analysis of four new heat shock genes constituting the hslu and hslv operons in Escherichia coli. Gene 134, 1–6 (1993).
    Article CAS Google Scholar
  7. Rohrwild, M. et al. HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl Acad. Sci. USA 93, 5808–5813 ( 1996).
    Article CAS ADS Google Scholar
  8. Missiakis, D., Schwager, F., Betton, J. -M., Georgopoulos, C. & Raina, S. Identification and characterizaton of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 6899–6909 (1996).
    Article Google Scholar
  9. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl Acad. Sci. USA 94, 6070–6074 (1997).
    Article CAS ADS Google Scholar
  10. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of _N_-ethylmaleimide-sensitive fusion protein. Cell 94, 525– 536 (1998).
    Article CAS Google Scholar
  11. Yu, R. C., Hanson, P. I., Jahn, R. & Brünger, A. T. Structure of the ATP-dependent oligomerization domain of the _N_-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998).
    Article CAS Google Scholar
  12. Huang, H. -C. & Goldberg, A. L. Proteolytic activity of the ATP-dependent protease HslVU can be uncoupled from ATP-hydrolysis. J. Biol. Chem. 272, 21364–21372 ( 1997).
    Article CAS Google Scholar
  13. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res. 9, 27– 43 (1999).
    CAS PubMed Google Scholar
  14. Feng, H. P. & Gierasch, L. M. Molecular chaperones: clamps for the Clps? Curr. Biol. 8, 464– 467 (1998).
    Article Google Scholar
  15. Traut, T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur. J. Biochem. 222, 9–19 ( 1994).
    Article CAS Google Scholar
  16. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP—and GTP-binding proteins. Trends Biochem. 15, 430– 434 (1990).
    Article Google Scholar
  17. Smith, C. A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602 (1996).
    Article CAS ADS Google Scholar
  18. Rohrwild, M. et al. The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature Struct. Biol 4, 133–139 (1997).
    Article CAS Google Scholar
  19. Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. Hsp100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289–296 (1996).
    Article CAS Google Scholar
  20. Karata, K., Inagawa, T., Wilkinson, A. J., Tatsuta, T. & Ogura, T. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. J. Biol. Chem. 274, 26225–26232 (1999).
    Article CAS Google Scholar
  21. Levchenko, I., Smith, C. K., Walsh, N. P., Sauer, R. T. & Baker, T. A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperone. Cell 91, 939–947 (1997).
    Article CAS Google Scholar
  22. Smith, C. K., Baker, T. A. & Sauer, R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl Acad. Sci. 96, 6678–6682 (1999).
    Article CAS ADS Google Scholar
  23. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 ( 1999).
    Article CAS ADS Google Scholar
  24. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3. 4 Å resolution. Science 268, 533–539 (1995).
    Article ADS Google Scholar
  25. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).
    Article CAS ADS Google Scholar
  26. Knowlton, J. R. et al. Structure of the proteasome activator REGα (PA28α). Nature 390, 639–643 (1997).
    Article CAS ADS Google Scholar
  27. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and elF3. Cell 94, 615–623 (1998).
    Article CAS Google Scholar
  28. Project, C. C. C. The CCP4 suite: programs for protein crystallography. Acta Cryst. D 50, 760–763 ( 1994).
    Article Google Scholar
  29. Jones, A. T. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).
    Article CAS Google Scholar
  30. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).
    Article Google Scholar

Download references