The structures of HslU and the ATP-dependent protease HslU–HslV (original) (raw)
References
Goldberg, A. L. & St. John, A. C. Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem.45, 747–803 (1976). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem.61, 761 –807 (1992). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia48, 178–201 (1992). ArticleCAS Google Scholar
Gottesman, S., Wickner, S. & Maurizi, M. R. Protein quality control: triage by chaperones and proteases. Genes Dev.11, 815– 823 (1997). ArticleCAS Google Scholar
Chuang, S. E., Burland, V., Plunkett, G., Daniels, D. L. & Blattner, F. R. Sequence analysis of four new heat shock genes constituting the hslu and hslv operons in Escherichia coli. Gene134, 1–6 (1993). ArticleCAS Google Scholar
Rohrwild, M. et al. HslV-HslU: a novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl Acad. Sci. USA93, 5808–5813 ( 1996). ArticleCASADS Google Scholar
Missiakis, D., Schwager, F., Betton, J. -M., Georgopoulos, C. & Raina, S. Identification and characterizaton of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J.15, 6899–6909 (1996). Article Google Scholar
Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl Acad. Sci. USA94, 6070–6074 (1997). ArticleCASADS Google Scholar
Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of _N_-ethylmaleimide-sensitive fusion protein. Cell94, 525– 536 (1998). ArticleCAS Google Scholar
Yu, R. C., Hanson, P. I., Jahn, R. & Brünger, A. T. Structure of the ATP-dependent oligomerization domain of the _N_-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol.5, 803–811 (1998). ArticleCAS Google Scholar
Huang, H. -C. & Goldberg, A. L. Proteolytic activity of the ATP-dependent protease HslVU can be uncoupled from ATP-hydrolysis. J. Biol. Chem.272, 21364–21372 ( 1997). ArticleCAS Google Scholar
Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation and disassembly of protein complexes. Genome Res.9, 27– 43 (1999). CASPubMed Google Scholar
Feng, H. P. & Gierasch, L. M. Molecular chaperones: clamps for the Clps? Curr. Biol.8, 464– 467 (1998). Article Google Scholar
Traut, T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur. J. Biochem.222, 9–19 ( 1994). ArticleCAS Google Scholar
Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP—and GTP-binding proteins. Trends Biochem.15, 430– 434 (1990). Article Google Scholar
Smith, C. A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J.70, 1590–1602 (1996). ArticleCASADS Google Scholar
Rohrwild, M. et al. The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature Struct. Biol4, 133–139 (1997). ArticleCAS Google Scholar
Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. Hsp100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci.21, 289–296 (1996). ArticleCAS Google Scholar
Karata, K., Inagawa, T., Wilkinson, A. J., Tatsuta, T. & Ogura, T. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. J. Biol. Chem.274, 26225–26232 (1999). ArticleCAS Google Scholar
Levchenko, I., Smith, C. K., Walsh, N. P., Sauer, R. T. & Baker, T. A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperone. Cell91, 939–947 (1997). ArticleCAS Google Scholar
Smith, C. K., Baker, T. A. & Sauer, R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl Acad. Sci.96, 6678–6682 (1999). ArticleCASADS Google Scholar
Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature401, 90–93 ( 1999). ArticleCASADS Google Scholar
Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3. 4 Å resolution. Science268, 533–539 (1995). ArticleADS Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). ArticleCASADS Google Scholar
Knowlton, J. R. et al. Structure of the proteasome activator REGα (PA28α). Nature390, 639–643 (1997). ArticleCASADS Google Scholar
Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and elF3. Cell94, 615–623 (1998). ArticleCAS Google Scholar
Project, C. C. C. The CCP4 suite: programs for protein crystallography. Acta Cryst. D50, 760–763 ( 1994). Article Google Scholar
Jones, A. T. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr.11, 268–272 (1978). ArticleCAS Google Scholar
Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921 (1998). Article Google Scholar