p16INK4A and p19ARF act in overlapping pathways in cellular immortalization (original) (raw)
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961). ArticleCAS Google Scholar
Campisi, J. The biology of replicative senescence. Eur. J. Cancer33, 703–709 (1997). ArticleCAS Google Scholar
Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349– 352 (1998). ArticleCAS Google Scholar
Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev.12, 1769–1774 (1998). ArticleCAS Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25– 34 (1997). ArticleCAS Google Scholar
Kamb, A. Cyclin-dependent kinase inhibitors and human cancer. Curr. Top. Microbiol. Immunol.227, 139–148 ( 1998). CASPubMed Google Scholar
Ruas, R. & Peters, G. The p16INK4A/CDKN2A tumor suppressor and its relatives. Biochem. Biophys. Acta1378, 115–177 (1998). Google Scholar
Sherr, C. J. Tumour surveillance via the ARF-p53 pathway. Genes Dev.12, 2984–2991 (1998). Article Google Scholar
Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91 , 649–659 (1997). ArticleCAS Google Scholar
Serrano, M. et al.. Role of the INK4a locus in tumor suppression and cell mortality . Cell85, 27–37 (1996). ArticleCAS Google Scholar
Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA93, 13742–13747 (1996). ArticleCAS Google Scholar
Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4A tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene15, 203–211 (1997). ArticleCAS Google Scholar
Kiyono, T. et al. Both Rb/p16INK4A inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 ( 1998) ArticleCAS Google Scholar
Noble, J. R. et al. Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene13, 1259–1268 (1996). CASPubMed Google Scholar
Chin, L., Pomerantz, J. & DePinho, R. A. The INK4a/ARF tumor suppressor: one gene — two products — two pathways. Trends Biochem. Sci.23, 291–296 (1998). ArticleCAS Google Scholar
Hannon, G. J. et al. Genetics in mammalian cells. Science283, 1129–1130 (1999). ArticleCAS Google Scholar
Serrano, M., Gomez-Lahoz, E., DePinho, R. A., Beach, D. & Bar-Sagi, D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science267, 249–252 ( 1995). ArticleCAS Google Scholar
Lukas, J. et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature375, 503– 506 (1995) ArticleCAS Google Scholar
Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA92, 6289– 6293 (1995). ArticleCAS Google Scholar
Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways . Cell92, 725–734 (1998). ArticleCAS Google Scholar
Pomerantz, J. et al. The Ink 4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell92, 713–723 ( 1998). ArticleCAS Google Scholar
Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA95, 8292–8297 (1998). ArticleCAS Google Scholar
Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature375, 694–698 (1995). ArticleCAS Google Scholar
Sun, P. Q., Dong, P., Dai, K., Hannon, G. J. & Beach, D. H. p53-independent function of MDM2 may contribute to TGFβ resistance in tumors. Science282, 2270–2272 (1998). ArticleCAS Google Scholar
Macleod, K. pRb and E2F-1 in mouse development and tumorigenesis. Curr. Opin. Genet. Dev.9, 31–39 ( 1999) ArticleCAS Google Scholar
Johnson, D. G. & Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Frontiers Biosci.3, 447–448 (1998). Article Google Scholar
Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA91 , 10918–10922 (1994). ArticleCAS Google Scholar
Hiebert, S. W. et al. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol.15, 6864– 6874 (1995) ArticleCAS Google Scholar
Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell2, 283–292 (1998). ArticleCAS Google Scholar
Nevins, J. R., Leone, G., DeGregori, J. & Jakoi, L. Role of the Rb/E2F pathway in cell growth control. J. Cell Physiol.173 , 233–236 (1997) ArticleCAS Google Scholar
Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell81, 323–330 (1995). ArticleCAS Google Scholar
Rittling, S. R. & Denhardt, D. T. p53 mutations in spontaneously immortalized 3T12 but not 3T3 mouse embryo cells. Oncogene7, 935–942 ( 1992) CASPubMed Google Scholar
Iravani, M., Dhat, R. & Price, C. M. Methylation of the multi tumor suppressor gene-2 (MTS2,CDKN1, p15INK4B) in childhood acute lymphoblasticleukemia. Oncogene15, 2609–2614 ( 1997). ArticleCAS Google Scholar