Specificities of heparan sulphate proteoglycans in developmental processes (original) (raw)
References
Bernfield,M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol.8, 365–393 (1992). ArticleCAS Google Scholar
Bernfield,M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem.68, 729–777 (1999). ArticleCAS Google Scholar
Habuchi,H., Habuchi,O. & Kimata,K. Biosynthesis of heparan sulfate and heparin. How are the multifunctional glycosaminoglycans built up? Trends Glycosci. Glycotechnol.10, 65–80 ( 1998). ArticleCAS Google Scholar
Rosenberg,R. D., Shworak,N. W., Liu,J., Schwartz,J. J. & Zhang, L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest.99, 2062–2072 (1997). ArticleCAS Google Scholar
Lindahl,U., Kusche-Gullberg,M. & Kjellén,L. Regulated diversity of heparan sulfate. J. Biol. Chem.273, 24979– 24982 (1998). ArticleCAS Google Scholar
Lyon,M. & Gallagher,J. T. Bio-specific sequences and domains in heparan sulfate and the regulation of cell growth and adhesion. Matrix Biol.17, 485–493 (1998). ArticleCAS Google Scholar
Lindahl,U. Heparin (CRC, Boca Raton, Florida, 1989). Google Scholar
Iozzo,R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem.67, 609–652 (1998). ArticleCAS Google Scholar
Nakato,H., Futch,T. A. & Selleck, S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development121, 3687– 3702 (1995). CASPubMed Google Scholar
Veugelers,M. & David,G. The glypicans: a family of GPI-anchored heparan sulfate proteoglycans with a potential role in the control of cell division. Trends Glycosci. Glycotechnol.10, 145–152 (1998). ArticleCAS Google Scholar
Fitzgerald,M. L. et al. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3 sensitive metalloproteinase. J. Cell. Biol.148, 811– 824 (2000). ArticleCAS Google Scholar
Subramanian,S. V., Fitzgerald,M. L. & Bernfield, M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor activation. J. Biol. Chem.272, 14713–14720 (1997). ArticleCAS Google Scholar
Kato,M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Med.4, 691–697 (1998). ArticleCAS Google Scholar
Kainulainen,V., Wang,H., Schick,C. & Bernfield,M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem.273, 11563– 11569 (1998). ArticleCAS Google Scholar
Binari,R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development124, 2623–2632 (1997). CAS Google Scholar
Haecker,U., Lin,X. & Perrimon,N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide. Development124 , 3565–3573 (1997). Google Scholar
Haerry,T. E., Heslip,T. R., Marsh,J. L. & O'Conner,M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development124, 3055– 3064. (1997). CAS Google Scholar
Lin,X. & Perrimon,N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature400, 281–284 (1999). ArticleADSCAS Google Scholar
Bellaiche,Y., The,I. & Perrimon,N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature394, 85–88 (1998). ArticleADSCAS Google Scholar
The,I., Bellaiche,Y. & Perrimon, N. Evidence that heparan sulfate proteoglycans are involved in the movement of Hedgehog molecules through fields of cells. Mol. Cell4, 633–639 ( 1999). ArticleCAS Google Scholar
Stickens,D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet.14, 25–32 (1996). ArticleCAS Google Scholar
McCormick,C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet.19, 158–161 (1998). ArticleCAS Google Scholar
Lind,T., Tufaro,F., McCormick,C., Lindahl,U. & Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem.273, 26265–26268 ( 1998). ArticleCAS Google Scholar
Toyoda,H., Kinoshita-Toyoda,A. & Selleck, S. B. Structural analysis of glycosaminoglycans in Drosophila and C.elegans and demonstration that tout velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J. Biol. Chem.275, 2269–2275 (2000). ArticleCAS Google Scholar
Sen,J., Goltz,J. S., Stevens,L. & Stein,D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell95, 471– 481 (1998). ArticleCAS Google Scholar
Bullock,S. L., Fletcher,J. M., Beddington, R. S. P. & Wilson,V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev.12, 1894–1906 (1998). ArticleCAS Google Scholar
Forsberg,E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature400, 773– 776 (1999). ArticleADSCAS Google Scholar
Humphries,D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature400, 769– 772 (1999). ArticleADSCAS Google Scholar
Kato,M., Wang,H., Bernfield,M., Gallagher,J. T. & Turnbull, J. E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem.269, 18881–18890 (1994). CASPubMed Google Scholar
Sanderson,R. D., Turnbull,J. E., Gallagher, J. T. & Lander,A. D. Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J. Biol. Chem.269, 13100– 13106 (1994). CASPubMed Google Scholar
Nurcombe,V., Ford,M. D., Wildschut,J. A. & Bartlett,P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science260, 103– 106 (1993). ArticleADSCAS Google Scholar
Tsuda,M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature400, 276– 280 (1999). ArticleADSCAS Google Scholar
Cadigan,K. M., Fish,M. P., Rulifson,E. J. & Nusse,R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell93, 767–777 (1998). ArticleCAS Google Scholar
Jackson,S. M. et al. Dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp. Development124, 4113–4120 (1997). CASPubMed Google Scholar
Gonzalez,A. D. et al. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson- Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line- specific manner. J. Cell Biol.141, 1407–1414 (1998). ArticleCAS Google Scholar
Pilia,G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nature Genet.12, 241 –247 (1996). ArticleCAS Google Scholar
Alexander,C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genet. (in the press).
Kitagawa,H., Shimakawa,H. & Sugahara, K. The tumor suppressor EXT-like gene EXTL-2 encodes an alpha1,4-_N_-acetylhexosaminyltransferase that transfers _N_-acetylgalactosamine and _N_-acetylglucosamine to the common glycosaminoglycan-protein liknkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem.274, 13933–13937 (1999). ArticleCAS Google Scholar
Rubin,G. M. et al. Comparative genomics of the eukaryotes. Science287, 2204–2215 ( 2000). ArticleCAS Google Scholar