Specificities of heparan sulphate proteoglycans in developmental processes (original) (raw)

References

  1. Bernfield,M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992).
    Article CAS Google Scholar
  2. Bernfield,M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).
    Article CAS Google Scholar
  3. Habuchi,H., Habuchi,O. & Kimata,K. Biosynthesis of heparan sulfate and heparin. How are the multifunctional glycosaminoglycans built up? Trends Glycosci. Glycotechnol. 10, 65–80 ( 1998).
    Article CAS Google Scholar
  4. Rosenberg,R. D., Shworak,N. W., Liu,J., Schwartz,J. J. & Zhang, L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99, 2062–2072 (1997).
    Article CAS Google Scholar
  5. Lindahl,U., Kusche-Gullberg,M. & Kjellén,L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979– 24982 (1998).
    Article CAS Google Scholar
  6. Lyon,M. & Gallagher,J. T. Bio-specific sequences and domains in heparan sulfate and the regulation of cell growth and adhesion. Matrix Biol. 17, 485–493 (1998).
    Article CAS Google Scholar
  7. Lindahl,U. Heparin (CRC, Boca Raton, Florida, 1989).
    Google Scholar
  8. Iozzo,R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).
    Article CAS Google Scholar
  9. Nakato,H., Futch,T. A. & Selleck, S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121, 3687– 3702 (1995).
    CAS PubMed Google Scholar
  10. Veugelers,M. & David,G. The glypicans: a family of GPI-anchored heparan sulfate proteoglycans with a potential role in the control of cell division. Trends Glycosci. Glycotechnol. 10, 145–152 (1998).
    Article CAS Google Scholar
  11. Fitzgerald,M. L. et al. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3 sensitive metalloproteinase. J. Cell. Biol. 148, 811– 824 (2000).
    Article CAS Google Scholar
  12. Subramanian,S. V., Fitzgerald,M. L. & Bernfield, M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor activation. J. Biol. Chem. 272, 14713–14720 (1997).
    Article CAS Google Scholar
  13. Kato,M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Med. 4, 691–697 (1998).
    Article CAS Google Scholar
  14. Kainulainen,V., Wang,H., Schick,C. & Bernfield,M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 11563– 11569 (1998).
    Article CAS Google Scholar
  15. Binari,R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).
    CAS Google Scholar
  16. Haecker,U., Lin,X. & Perrimon,N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide. Development 124 , 3565–3573 (1997).
    Google Scholar
  17. Haerry,T. E., Heslip,T. R., Marsh,J. L. & O'Conner,M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055– 3064. (1997).
    CAS Google Scholar
  18. Lin,X. & Perrimon,N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).
    Article ADS CAS Google Scholar
  19. Bellaiche,Y., The,I. & Perrimon,N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).
    Article ADS CAS Google Scholar
  20. The,I., Bellaiche,Y. & Perrimon, N. Evidence that heparan sulfate proteoglycans are involved in the movement of Hedgehog molecules through fields of cells. Mol. Cell 4, 633–639 ( 1999).
    Article CAS Google Scholar
  21. Stickens,D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet. 14, 25–32 (1996).
    Article CAS Google Scholar
  22. McCormick,C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet. 19, 158–161 (1998).
    Article CAS Google Scholar
  23. Lind,T., Tufaro,F., McCormick,C., Lindahl,U. & Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273, 26265–26268 ( 1998).
    Article CAS Google Scholar
  24. Toyoda,H., Kinoshita-Toyoda,A. & Selleck, S. B. Structural analysis of glycosaminoglycans in Drosophila and C.elegans and demonstration that tout velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000).
    Article CAS Google Scholar
  25. Sen,J., Goltz,J. S., Stevens,L. & Stein,D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471– 481 (1998).
    Article CAS Google Scholar
  26. Bullock,S. L., Fletcher,J. M., Beddington, R. S. P. & Wilson,V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).
    Article CAS Google Scholar
  27. Forsberg,E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773– 776 (1999).
    Article ADS CAS Google Scholar
  28. Humphries,D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769– 772 (1999).
    Article ADS CAS Google Scholar
  29. Kato,M., Wang,H., Bernfield,M., Gallagher,J. T. & Turnbull, J. E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem. 269, 18881–18890 (1994).
    CAS PubMed Google Scholar
  30. Sanderson,R. D., Turnbull,J. E., Gallagher, J. T. & Lander,A. D. Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J. Biol. Chem. 269, 13100– 13106 (1994).
    CAS PubMed Google Scholar
  31. Nurcombe,V., Ford,M. D., Wildschut,J. A. & Bartlett,P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260, 103– 106 (1993).
    Article ADS CAS Google Scholar
  32. Tsuda,M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276– 280 (1999).
    Article ADS CAS Google Scholar
  33. Cadigan,K. M., Fish,M. P., Rulifson,E. J. & Nusse,R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).
    Article CAS Google Scholar
  34. Jackson,S. M. et al. Dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp. Development 124, 4113–4120 (1997).
    CAS PubMed Google Scholar
  35. Gonzalez,A. D. et al. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson- Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line- specific manner. J. Cell Biol. 141, 1407–1414 (1998).
    Article CAS Google Scholar
  36. Pilia,G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nature Genet. 12, 241 –247 (1996).
    Article CAS Google Scholar
  37. Alexander,C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genet. (in the press).
  38. Kitagawa,H., Shimakawa,H. & Sugahara, K. The tumor suppressor EXT-like gene EXTL-2 encodes an alpha1,4-_N_-acetylhexosaminyltransferase that transfers _N_-acetylgalactosamine and _N_-acetylglucosamine to the common glycosaminoglycan-protein liknkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999).
    Article CAS Google Scholar
  39. Rubin,G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).
    Article CAS Google Scholar

Download references