Motor proteins regulate force interactions between microtubules and microfilaments in the axon (original) (raw)

References

  1. Halloran, M. C. & Kalil, K. Dynamic behaviors of growth cones extending in the corpus callosum of living cortical brain slices observed with video microscopy. J. Neurosci. 14, 2161–2177 (1994).
    Article CAS Google Scholar
  2. Tanaka, E. & Sabry, J. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell 83, 171–176 (1995).
    Article CAS Google Scholar
  3. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49, 614–635 (1971).
    Article CAS Google Scholar
  4. Bray, D. & Bunge, M. B. Serial analysis of microtubules in cultured rat sensory axons. J. Neurocytol. 10, 589–605 (1981).
    Article CAS Google Scholar
  5. Yu, W. & Baas, P. W. Changes in microtubule number and length during axon differentiation. J. Neurosci. 14, 2818–2829 (1994).
    Article CAS Google Scholar
  6. Letourneau, P. C. Differences in the organization of actin in growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97, 963–973 (1993).
    Article Google Scholar
  7. Fath, K. R. & Lasek, R. J. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J. Cell Biol. 107, 613–621 (1988).
    Article CAS Google Scholar
  8. Lewis, A. K. & Bridgman, P. C. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J. Cell Biol. 119, 1219–1243 (1992).
    Article CAS Google Scholar
  9. Bearer, E. L. & Reese, T. S. Association of actin filaments with axonal microtubule tracts. J. Neurocytol. 2, 85–98 (1999).
    Article Google Scholar
  10. Yamada, K. M., Spooner, B. S. & Wessells, N. K. Axon growth: role of microfilaments and microtubules. Proc. Natl Acad. Sci. USA 66, 1206–1212 (1970).
    Article CAS Google Scholar
  11. Letourneau, P. C., Shattuck, T. A. & Ressler, A. H. ‘Pull’ and ‘push’ in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil. Cytoskeleton 8, 193–209 (1987).
    Article CAS Google Scholar
  12. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in the neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).
    Article CAS Google Scholar
  13. Lin, C. H. & Forscher, P. Cytoskeletal remodeling during growth cone-target interactions. J. Cell Biol. 121, 1369–1383 (1993).
    Article CAS Google Scholar
  14. Challacombe, J. F., Snow, D. M. & Letourneau, P. C. Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J. Cell Sci. 109, 2031–2040 (1996).
    CAS PubMed Google Scholar
  15. Rochlin, W. M., Dailey, M. E. & Bridgman, P. C. Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol. Biol. Cell 10, 2309–2327 (1999).
    Article CAS Google Scholar
  16. Solomon, F. & Magendantz, M. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J. Cell Biol. 89, 157–161 (1988).
    Article Google Scholar
  17. Joshi, H. C., Chu, D., Buxbaum, R. E. & Heidemann, S. R. Tension and compression in the cytoskeleton of PC12 neurites. J. Cell Biol. 101, 697–705 (1985).
    Article CAS Google Scholar
  18. Heidemann, S. R. & Buxbaum, R. E. Tension as a regulator and integrator of axonal growth. Cell Motil. Cytoskeleton 17, 6–10 (1990).
    Article CAS Google Scholar
  19. Walczak, C. E. & Mitchison, T. J. Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85, 943–946 (1996).
    Article CAS Google Scholar
  20. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).
    Article CAS Google Scholar
  21. Koonce, M. P. et al. Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J. 18, 6786–6792 (1999).
    Article CAS Google Scholar
  22. Ma, S., Trivinos-Lagos, L., Graf, R. & Chisholm, R. L. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147, 1261–1273 (1999).
    Article CAS Google Scholar
  23. Garces, J. A., Clark, I. B., Meyer, D. I. & Vallee, R. B. Interaction of the p62 subunit of dynactin with Arp1 and the cortical actin cytoskeleton. Curr. Biol. 9, 1497–1500 (1999).
    Article CAS Google Scholar
  24. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in one cell stage of Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).
    Article CAS Google Scholar
  25. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & Mey, J. R. D. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).
    Article CAS Google Scholar
  26. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).
    Article CAS Google Scholar
  27. Inoue, S., Yoder, O. C., Turgeon, B. G. & Aist, J. R. A cytoplasmic dynein required for mitotic aster formation in vivo. J. Cell Sci. 111, 2607–2614 (1998).
    CAS PubMed Google Scholar
  28. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 246–256 (1998).
    Article Google Scholar
  29. Evans, L. L. & Bridgman, P. C. Particles move along actin filament bundles in nerve growth cones. Proc. Natl Acad. Sci. USA 92, 10954–10958 (1995).
    Article CAS Google Scholar
  30. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).
    Article CAS Google Scholar
  31. Shaw, G. & Bray, D. Movement and extension of isolated growth cones. Exp. Cell Res. 104, 55–62 (1977).
    Article CAS Google Scholar
  32. Baas, P. W. & Heidemann, S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J. Cell Biol. 103, 917–927 (1986).
    Article CAS Google Scholar
  33. Yu, W. & Baas, P. W. The growth of the axon is not dependent upon net microtubule assembly at its distal tip. J. Neurosci. 15, 6827–6833 (1995).
    Article CAS Google Scholar
  34. Spector, I., Sochet, N. R., Kashman, Y. & Groweiss, A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 241, 493–495 (1983).
    Article Google Scholar
  35. George, E. B., Schneider, B. F., Lasek, R. J. & Katz, M. J. Axonal shortening and the mechanisms of axonal motility. Cell Motil. Cytoskeleton 9, 48–59 (1988).
    Article CAS Google Scholar
  36. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–782 (1996).
    Article CAS Google Scholar
  37. Meeusen, R. L. & Cande, W. Z. N-Ethylmaleimide-modified heavy meromyosin: a probe for actomyosin interactions. J. Cell Biol. 82, 57–65 (1979).
    Article CAS Google Scholar
  38. Meeusen, R. L., Bennett, J. & Cande, W. Z. Effect of microinjected N-ethylmaleimide-modified heavy meromyosin on cell division in amphibian eggs. J. Cell Biol. 86, 858–865 (1980).
    Article CAS Google Scholar
  39. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).
    Article CAS Google Scholar
  40. Wittmann, T. & Hyman, T. Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol. 61, 137–143 (1999).
    Article CAS Google Scholar
  41. Heidemann, S. R., Kaech, S., Buxbaum, R. E. & Matus, A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145, 109–122 (1999).
    Article CAS Google Scholar
  42. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).
    Article CAS Google Scholar
  43. Kolodney, M. S. & Elson, E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl Acad. Sci. USA 92, 10252–10256 (1995).
    Article CAS Google Scholar
  44. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).
    Article CAS Google Scholar
  45. Olsson, P-R., Korhonen, L., Mercer, E. A. & Lindholm, D. MIR is a novel ERM-like protein that interacts with myosin regulatory light chain and inhibits neurite outgrowth. J. Biol. Chem. 274, 36288–36292 (1999).
    Article CAS Google Scholar
  46. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).
    Article CAS Google Scholar
  47. Waterman-Storer, C. M & Salmon, E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67 (1999).
    Article CAS Google Scholar
  48. Dillman, J. F., Dabney, L. P. & Pfister, K. K. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl Acad. Sci. USA 93, 141–144 (1996).
    Article CAS Google Scholar
  49. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–41 (1999).
    Article CAS Google Scholar
  50. Rodionov, V. I. et al. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol. 123, 1811–1820 (1993).
    Article CAS Google Scholar

Download references