Phospholipase C and termination of G-protein-mediated signalling in vivo (original) (raw)

References

  1. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73– 77 (1997).
    Article CAS Google Scholar
  2. Devary, O. et al. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc. Natl. Acad. Sci. USA 84 , 6939–6943 (1987).
    Article CAS Google Scholar
  3. Lee, Y. J., Dobbs, M. B., Verardi, M. L. & Hyde, D. R. dgq: a Drosophila gene encoding a visual system-specific G α-molecule . Neuron 5, 889–898 (1990).
    Article CAS Google Scholar
  4. Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. Gq α-protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919–927 (1995).
    Article CAS Google Scholar
  5. Bloomquist, B. T., et al. Isolation of a putative phospholipase C gene of Drosophila , norpA, and its role in phototransduction. Cell 54, 723–733 (1988).
    Article CAS Google Scholar
  6. Selinger, Z. & Minke, B. Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harb. Symp. Quant. Biol. 53 Pt 1, 333–341 (1988).
    Article CAS Google Scholar
  7. Huber, A., Sander, P., Gobert, A., Bahner, M., Hermann, R. & Paulsen, R. The transient receptor potential protein (Trp), a putative store- operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 15, 7036–7045 (1996).
    Article CAS Google Scholar
  8. Shieh, B. H. & Zhu, M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998 ( 1996).
    Article CAS Google Scholar
  9. Shieh, B. H., Zhu, M. Y., Lee, J. K., Kelly, I. M. & Bahiraei, F. Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo . Proc. Natl Acad. Sci. USA 94, 12682 –12687 (1997).
    Article CAS Google Scholar
  10. Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18, 95–105 (1997).
    Article CAS Google Scholar
  11. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).
    Article CAS Google Scholar
  12. van Huizen, R. et al. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J. 17, 2285–2297 (1998).
    Article CAS Google Scholar
  13. Xu, X. Z., Choudhury, A., Li, X. & Montell, C. Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol. 142, 545–555 (1998).
    Article CAS Google Scholar
  14. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel s messenger in cellular signal transduction. Nature 312, 315–321 (1984).
    Article CAS Google Scholar
  15. Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G. & Ross, E. M. Phospholipase C-β 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70, 411–418 (1992).
    Article CAS Google Scholar
  16. Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins . Proc. Natl. Acad. Sci. USA 96, 9539– 9544 (1999).
    Article CAS Google Scholar
  17. Arshavsky, V. Y. & Pugh, E. N. Lifetime regulation of G protein-effector complex: emerging importance of RGS proteins. Neuron 20, 11–14 (1998).
    Article CAS Google Scholar
  18. Makino, E. R., Handy, J. W., Li, T. & Arshavsky, V. Y. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS 9 and type 5 G protein β subunit. Proc. Natl Acad. Sci. USA 96, 1947–1952 (1999).
    Article CAS Google Scholar
  19. Chen, C.-K., Burns, M. E., He, W., Wensel, T. G., Baylor, D. A. & Simon, M. I. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS 9-1. Nature 403, 557– 560 (2000).
    Article CAS Google Scholar
  20. Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol. Lond. 288, 613–634 (1979).
    CAS PubMed PubMed Central Google Scholar
  21. Yeandle, S. & Spiegler, J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J. Gen. Physiol. 61, 552–571 (1973).
    Article CAS Google Scholar
  22. Dodge, F. A., Jr, Knight, B. W. & Toyoda, J. Voltage noise in Limulus visual cells. Science 160, 88–90 (1968).
    Article Google Scholar
  23. Wu, C. F. & Pak, W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. 71, 249–268 ( 1978).
    Article CAS Google Scholar
  24. Berridge, M. J. Capacitive calcium entry. Biochem. J. 312, 1–11 (1995).
    Article CAS Google Scholar
  25. Yau, K. W. & Baylor, D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289–327 (1989).
    Article CAS Google Scholar
  26. Stieve, H. Bumps, the elementary excitatory responses of invertebrates. in The Molecular Mechanism of Photoreception (ed. Stieve,H.) 199-230 (Springer Verlag, Berlin, 1986).
  27. Kirkwood, A., Weiner, D. & Lisman, J. E. An estimate of the number of G regulator proteins activated per excited rhodopsin in living Limulus ventral photoreceptors . Proc. Natl. Acad. Sci. USA 86, 3872– 3876 (1989).
    Article CAS Google Scholar
  28. Fein, A., Payne, R., Corson, D. W., Berridge, M. J. & Irvine, R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature 311, 157– 160 (1984).
    Article CAS Google Scholar
  29. Minke, B. & Stephenson, R. S. The characteristics of chemically induced noise in Musca photoreceptors. J. Comp. Physiol. 156, 339–356 (1985).
    Article CAS Google Scholar
  30. Pak, W. L., Ostroy, S. E., Deland, M. C. & Wu, C. F. Photoreceptor mutant of Drosophia: is protein involved in intermediate steps of phototransduction? Science 194, 956–959 (1976).
    Article CAS Google Scholar
  31. Scott, K. & Zuker, C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses . Nature 395, 805–808 (1998).
    Article CAS Google Scholar
  32. Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G. & Pak, W. L. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J. Biol. Chem. 271, 4937–4945 (1996).
    Article CAS Google Scholar
  33. Meij, J. T. & Ross, E. M. Purification and characterization of phospholipase C-β 1 mutants expressed in E. coli. Biochem. Biophys. Res. Commun. 225, 705– 711 (1996).
    Article CAS Google Scholar
  34. Pak, W. L. in Neurogenetics: Genetic Approaches to the Nervous System (ed. Breakfield,X.) 67–99 (Elsevier North-Holland, New York, 1979).
  35. Hardie, R. C. & Minke, B. The trp gene is essential for a light-activated Ca2+channel in Drosophila photoreceptors . Neuron 8, 643–651 (1992).
    Article CAS Google Scholar
  36. Baylor, D. How photons start vision. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).
    Article CAS Google Scholar
  37. He, W., Cowan, C. W. & Wensel, T. G. RGS 9, a GTPase accelerator for phototransduction . Neuron 20, 95–102 (1998).
    Article Google Scholar
  38. Tsang, S. H. et al. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282, 117– 121 (1998).
    Article CAS Google Scholar
  39. Hardie, R. C., Peretz, A., Pollock, J.A. & Minke, B. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc. Roy. Soc. Lond. B 252, 223–229 (1993).
    Article CAS Google Scholar
  40. Hardie, R. C. Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc. Roy. Soc. Lond. B 245, 203 –210 (1991).
    Article Google Scholar
  41. Peretz, A., Suss-Toby, E., Rom-Glas, A., Arnon, A., Payne, R. & Minke, B. The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specifics mutations . Neuron 12, 1257–1267 (1994).
    Article CAS Google Scholar
  42. Blumenfeld, A., Erusalimsky, J., Heichal, O., Selinger, Z. & Minke, B. Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proc. Natl Acad. Sci. USA 82 , 7116–7120 (1985).
    Article CAS Google Scholar
  43. Minke, B. & Selinger, Z. in Progress in Retinal Research (eds Osborne,N.A. & Chader,G.J.) 99-124 (Pergamon Press, Oxford, 1991).
  44. Schramm, M. (ed. Martonosi, N. A.) in Membranes and Transport (ed. Martonosi, N. A.) 555–560 (Plenum, New York, 1982).

Download references