Disruption of the plant gene MOM releases transcriptional silencing of methylated genes (original) (raw)
References
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–118 (1998). ArticleCAS Google Scholar
Matzke, A. J. M. & Matzke, M. A. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol.1, 142–148 ( 1998). ArticleCAS Google Scholar
Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet.11, 94–100 ( 1995). ArticleCAS Google Scholar
Kingston, R. E. & Narlikar, G. J. ATP-dependent remodelling and acetylation as regulators of chromatin fluidity. Genes Dev.13, 2339–2352 (1999). ArticleCAS Google Scholar
Adams, R. L. P. et al. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J. P. & Saluz, H. P.) 120–144 (Birkhauser, Basel, Boston, Berlin, 1993). Book Google Scholar
Jost, J. -P., Siegmann, M., Sun, L. & Leung, R. Mechanism of DNA demethylation in chicken embryos: Purification and properties of a 5-methylcytosine-DNA glycosidase. J. Biol. Chem.270, 9734– 9739 (1995). ArticleCAS Google Scholar
Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science273, 654–656 (1996). ArticleADSCAS Google Scholar
Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA93, 8449–8454 ( 1996). ArticleADSCAS Google Scholar
Jeddeloh, J. A., Bender, J. & Richards, E. J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev.12, 1714–1725 (1998). ArticleCAS Google Scholar
Mittelsten Scheid, O., Afsar, K. & Paszkowski, J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl Acad. Sci. USA95, 632–637 (1998). ArticleADSCAS Google Scholar
Nan, X. S. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleADSCAS Google Scholar
Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187– 191 (1998). ArticleCAS Google Scholar
Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics149, 651–662 ( 1998). CASPubMedPubMed Central Google Scholar
Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science260, 1926–1928 (1993). ArticleADSCAS Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94– 97 (1999). ArticleCAS Google Scholar
Kakutani, T., Munakata, K., Richards, E. J. & Hirochika, H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics151, 831–838 ( 1999). CASPubMedPubMed Central Google Scholar
Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol.3, 419–429 (1993). ArticleCAS Google Scholar
Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a Dexx box DNA helicase. Nature384, 379–383 (1996). ArticleADSCAS Google Scholar
Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol.4, 463–497 (1997). ArticleCAS Google Scholar
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicases with a DNA substrate indicate an inchworm mechanism. Cell97, 75– 84 (1999). ArticleCAS Google Scholar
Koonin, E. V. & Rudd, K. E. Two domains of superfamily I helicases may exist as separate proteins. Protein Sci.5, 178–180 (1996). ArticleCAS Google Scholar
Jiang, Y. W. & Stillman, D. Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Genes Dev.10, 604–19 ( 1996). ArticleCAS Google Scholar
Chuang, J. -Z., Lin, D. C. & Lin, S. Molecular cloning, expression, and mapping of the high affinity actin-binding domain of chicken cardiac tensin. J. Cell Biol.128 , 1095–1109 (1995). ArticleCAS Google Scholar
Hicks, G. R. & Raikhel, N. V. Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol.11, 155–188 (1995). ArticleCAS Google Scholar
von Heijne, G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol.225, 487– 494 (1992). ArticleCAS Google Scholar
Workman, H. J., Evance, C. D. & Blobel, G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J. Cell Biol.111, 1535–1542 (1990). Article Google Scholar
Martin, L., Crimaudo, C. & Gerace, L. cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J. Biol. Chem.270, 8822– 8828 (1995). ArticleCAS Google Scholar
Furukawa, K., Pante, N., Aebi, U. & Gerace, L. Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope. EMBO J.14, 1626–1636 (1995). ArticleCAS Google Scholar
Bird, A. & Wolffe, A. P. Methylation-induced repression— belts, braces, and chromatin. Cell99, 451 –454 (1999). ArticleCAS Google Scholar
Mengiste, T., Amedeo, P. & Paszkowski, J. High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1’ promoter. Plant J.12, 945–948 ( 1997). ArticleCAS Google Scholar