Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex (original) (raw)

References

  1. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).
    Article ADS CAS Google Scholar
  2. Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 9, 2325–2334 (1995).
    Article CAS Google Scholar
  3. Jahner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623–628 (1982).
    Article ADS CAS Google Scholar
  4. Groudine, M., Eisenman, R. & Weintraub, H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292, 311–317 (1981).
    Article ADS CAS Google Scholar
  5. Meehan, R. R., Lewis, J. D., McKay, S., Kleiner, E. L. & Bird, A. P. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507 (1989).
    Article CAS Google Scholar
  6. Lewis, J. D. et al. Purification, sequence and cellular localisation of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).
    Article CAS Google Scholar
  7. Boyes, J. & Bird, A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134 (1991).
    Article CAS Google Scholar
  8. Cross, S. H., Meehan, R. R., Nan, X. & Bird, A. Acomponent of the transcriptional repressor MeCP1 is related to mammalian DNA methyltransferase and thrithorax-like protein. Nature Genet. 16, 256–259 (1997).
    Article CAS Google Scholar
  9. Nan, X., Campoy, J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).
    Article CAS Google Scholar
  10. Tate, P., Skarnes, W. & Bird, A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Gent. 12, 205–208 (1996).
    Article CAS Google Scholar
  11. Nan, X., Meehan, R. R. & Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21, 4886–4892 (1993).
    Article CAS Google Scholar
  12. Nan, X., Tate, P., Li, E. & Bird, A. P. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16, 414–421 (1996).
    Article CAS Google Scholar
  13. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 849–356 (1997).
    Article Google Scholar
  14. Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55 (1997).
    Article ADS CAS Google Scholar
  15. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).
    Article CAS Google Scholar
  16. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSINA, and histone deacetylase. Cell 89, 373–380 (1997).
    Article CAS Google Scholar
  17. Heinzel, T. et al. Acomplex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).
    Article ADS CAS Google Scholar
  18. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).
    Article CAS Google Scholar
  19. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).
    Article CAS Google Scholar
  20. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423–430 (1995).
    Article CAS Google Scholar
  21. 1. Lewis, J. & Bird, A. DNA methylation and chromatin structure. FEBS Lett. 285, 155–159 (1991).
    Article CAS Google Scholar
  22. Kass, S. U., Landsberger, N. & Wolffe, A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).
    Article CAS Google Scholar
  23. Buschhausen, G., Witting, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl Acad. Sci. USA 84, 1177–1181 (1987).
    Article ADS CAS Google Scholar
  24. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).
    Article ADS CAS Google Scholar
  25. Kass, S. U., Pruss, D. & Wolffe, A. P. How does DNA methylation repress transcription? Trends Genet. 13, 444–449 (1997).
    Article CAS Google Scholar
  26. Chen, Z. J. & Pikaard, C. S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation hsitone modification in nucleolar dominance. Genes Dev. 11, 2124–2136 (1997).
    Article CAS Google Scholar
  27. Pazin, M. J. & Kadonaga, J. T. What's up and down with histone deacetylation and transcription? Cell 89, 325–328 (1997).
    Article CAS Google Scholar
  28. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 5, 1475–1489 (1983).
    Article Google Scholar
  29. Turner, B. M. & Fellows, G. Specific antibodies reveal ordered and cell cycle-related use of histone H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139 ((1989)).
    Article CAS Google Scholar
  30. Li, W., Chen, H. Y. & Davie, J. R. Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochem. J. 314, 631–637 (1996).
    Article CAS Google Scholar

Download references