The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42 (original) (raw)
References
Cabib, E., Drgonova, J. & Drgon, T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu. Rev. Biochem.67, 307–333 (1998). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev.63, 54– 105 (1999). CASPubMedPubMed Central Google Scholar
Nobes, C. D. & Hall, A. Rho GTPases control polarity, protrusion and adhesion during cell movement. J. Cell Biol.144 , 1235–1244 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol.1, 8–13 (1999).
Eaton, S., Wepf, R. & Simons, K. Roles for Rac1 and Cdc42 in planar polarization and hair outgrowth in the wing of Drosophila. J. Cell Biol.135, 1277–1289 (1996). ArticleCASPubMed Google Scholar
Hing, H., Xiao, J., Harden, N., Lim, L. & Zipursky, S. L. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell97, 853 –863 (1999). ArticleCASPubMed Google Scholar
Chen, W., Chen, S., Yap, S. F. & Lim, L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalises with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J. Biol. Chem.271, 26362–26368 (1996). ArticleCASPubMed Google Scholar
Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signalling networks. Genes Dev.11, 2295–2322 (1997). ArticleCASPubMed Google Scholar
Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem.270, 29071–29074 ( 1995). ArticleCASPubMed Google Scholar
Nelson, W. J. & Grindstaff, K. K. Cell polarity: par for the polar course. Curr. Biol.7, R562-R564 (1997). Article Google Scholar
Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell83, 743–752 ( 1995). ArticleCASPubMed Google Scholar
Fanning, A. S. & Anderson, J. M. Protein–protein interactions — PDZ domain networks. Curr. Biol.6, 1385–1388 (1996). ArticleCASPubMed Google Scholar
Ponting, C. P., Phillips, C., Davies, K. E. & Blake, D. J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays19, 469–479 ( 1997). ArticleCASPubMed Google Scholar
Tabuse, Y. et al. Atypical protein kinase C co-operates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development125, 3607–3614 ( 1998). CASPubMed Google Scholar
Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalises with PAR-3 in Caenorhabditis elegans embryos. Development126, 127–135 ( 1999).
Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ- domain protein Bazooka. Curr. Biol.8, 1357–1365 (1998). ArticleCASPubMed Google Scholar
Izumi, Y. et al. An atypical PKC directly associates and colocalises at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol.143, 95–106 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem.274, 3726– 3733 (1999). ArticleCASPubMed Google Scholar
Bruckner, K. & Klein, R. Signalling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol.8, 375–382 (1998). ArticleCASPubMed Google Scholar
Neudauer, C. L., Joberty, G., Tatsis, N. & Macara, I. G. Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr. Biol.8, 1151-1160 (1998). Article Google Scholar
Rousset, R., Fabre, S., Desbois, C., Bantignies, F. & Jalinot, P. The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene16, 643-54 (1998). ArticlePubMed Google Scholar
Hotta, K., Tanaka, K., Mino, A., Kohno, H. & Takai, Y. Interaction of the Rho family small G proteins with kinectin, an anchoring protein of kinesin motor. Biochem. Biophys. Res. Commun.225, 69-74 (1996). ArticlePubMed Google Scholar
Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S. & Lim, W. A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science284, 812–815 (1999). ArticleCASPubMed Google Scholar
Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol.Cell. Biol.19, 6585– 6597 (1999). ArticleCASPubMedPubMed Central Google Scholar
Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein. Nature399, 379–383 ( 1999). ArticleCASPubMed Google Scholar
Mott, H. R. et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature399, 384– 388 (1999). ArticleCASPubMed Google Scholar
Stevens, W. K. et al. Conformation of a Cdc42/Rac interactive binding peptide in complex with Cdc42 and analysis of the binding interface. Biochemistry38, 5968–5975 ( 1999). ArticleCASPubMed Google Scholar
Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct pdz domains. Science275, 73– 77 (1997). ArticleCASPubMed Google Scholar
Daniels, D. L., Cohen, A. R., Anderson, J. M. & Brunger, A. T. Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nature Struct. Biol.5, 317–325 (1998). ArticleCASPubMed Google Scholar
Wu, S. L., Staudinger, J., Olson, E. N. & Rubin, C. S. Structure, expression, and properties of an atypical protein kinase C (PKC3) from Caenorhabditis elegans. PKC3 is required for the normal progression of embryogenesis and viability of the organism. J. Biol. Chem.273, 1130–1143 (1998). ArticleCASPubMed Google Scholar
Kuroda, S., Fukata, M., Nakagawa, M. & Kaibuchi, K. Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell–cell adhesion. Biochem. Biophys. Res. Commun.262, 1–6 (1999). ArticleCASPubMed Google Scholar
Muller, H. A. & Wieschaus, E. Armadillo, Bazooka and Stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol.134, 149–163 ( 1996). ArticleCASPubMed Google Scholar
Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature402, 548–551 (1999). ArticleCASPubMed Google Scholar
Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localisation in Drosophila neuroblasts. Nature402, 544–547 ( 1999). ArticleCASPubMed Google Scholar
Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Galpha-binding protein PINS orients asymmetric cell divisions in Drosophila. Curr. Biol.10, 353–362 (2000). ArticleCASPubMed Google Scholar
Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of Inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in Inscuteable apical localisation. Cell100, 399–409 ( 2000). ArticleCASPubMed Google Scholar
Coghlan, M. P., Chou, M. M. & Carpenter, C. L. Atypical protein kinases Cλ and -ζ associate with the GTP-binding protein Cdc42 and mediate stress fibre loss. Mol. Cell Biol.20, 2880–2889 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. in Molecular Cloning: A laboratory Manual. (ed. Nolan, C.) 16.32–16.36 (CSH, Plainview, New York, 1989).