Structural and biochemical basis of apoptotic activation by Smac/DIABLO (original) (raw)

References

  1. Steller, H. Mechanisms and genes of cellular suicide. Science 267 , 1445–1449 (1995).
    Article ADS CAS Google Scholar
  2. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 ( 1997).
    Article CAS Google Scholar
  3. Hengartner, M. O. Programmed cell death in invertebrates. Curr. Opin. Genet. Dev. 6, 34–38 (1996 ).
    Article CAS Google Scholar
  4. Horvitz, H. R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59, 1701– 1706 (1999).
    Google Scholar
  5. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 ( 1995).
    Article ADS CAS Google Scholar
  6. Green, D. R. & Martin, S. J. The killer and the executioner: how apoptosis controls malignancy. Curr. Opin. Immunol. 7, 694–703 (1995).
    Article CAS Google Scholar
  7. Thornberry, N. A. & Lazebnik, Y. Caspases: Enemies within. Science 281, 1312– 1316 (1998).
    Article CAS Google Scholar
  8. Chinnaiyan, A. M. & Dixit, V. M. The cell-death machine. Curr. Biol. 6, 555– 562 (1996).
    Article CAS Google Scholar
  9. Deveraux, Q. L. & Reed, J. C. IAP family proteins—suppressors of apoptosis. Genes Dev. 13, 239– 252 (1999).
    Article CAS Google Scholar
  10. Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).
    Article CAS Google Scholar
  11. Wang, S., Hawkins, C., Yoo, S., Muller, H.-A. & Hay, B. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).
    Article CAS Google Scholar
  12. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).
    Article CAS Google Scholar
  13. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).
    Article CAS Google Scholar
  14. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).
    Article CAS Google Scholar
  15. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 ( 1998).
    Article CAS Google Scholar
  16. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355– 1357 (1998).
    Article ADS CAS Google Scholar
  17. Hu, Y., Ding, L., Spencer, D. M. & Nunez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem. 273, 33489–33494 (1998).
    Article CAS Google Scholar
  18. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1-cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549– 11556 (1999).
    Article CAS Google Scholar
  19. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941–17945 (1999).
    Article CAS Google Scholar
  20. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).
    Article CAS Google Scholar
  21. Verhagen, A. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing inhibitor of apoptosis (IAP) proteins. Cell 102, 43–53 (2000).
    Article CAS Google Scholar
  22. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251 ( 1999).
    Article CAS Google Scholar
  23. Takahashi, R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787– 7790 (1998).
    Article CAS Google Scholar
  24. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175– 184 (1997).
    Article CAS Google Scholar
  25. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43– 50 (1998).
    Article ADS CAS Google Scholar
  26. Liu, X. et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl Acad. Sci. USA 95, 8461–8466 ( 1998).
    Article ADS CAS Google Scholar
  27. Hirel, P.-H., Schmitter, J.-M., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl Acad. Sci. USA 86, 8247–8251 ( 1989).
    Article ADS CAS Google Scholar
  28. Rotonda, J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3, 619 –625 (1996).
    Article CAS Google Scholar
  29. Hozak, R. R., Manji, G. A. & Friesen, P. D. The BIR motifs mediate dominant interference and oligomerization of inhibitor of apoptosis Op-IAP. Mol. Cell. Biol. 20, 1877–1885 ( 2000).
    Article CAS Google Scholar
  30. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).
    Article ADS CAS Google Scholar
  31. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptosis program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).
    Article CAS Google Scholar
  32. Terwilliger, T. C. & Berendzen, J. Correlated phasing of multiple isomorphous replacement data. Acta Crystallogr. D 52, 749–757 (1996).
    Article CAS Google Scholar
  33. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).
    Article Google Scholar
  34. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  35. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS Google Scholar
  36. Klaulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).
    Article Google Scholar
  37. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interficial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar

Download references