NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP (original) (raw)

References

  1. Crook,N. E. Clem,R. J. & Miller,L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993).
    CAS PubMed PubMed Central Google Scholar
  2. Hay,B. A., Wassarman,D. A. & Rubin,G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253–1262 (1995).
    Article CAS PubMed Google Scholar
  3. Roy,N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178 (1995).
    Article CAS PubMed Google Scholar
  4. Duckett,C. S. et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  5. Uren,A. G., Pakusch,M., Hawkins,C. J., Puls,K. L. & Vaux,D. L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl Acad. Sci. USA 93, 4974–4978 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  6. Ambrosini,G., Adida,C. & Altieri,D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).
    Article CAS PubMed Google Scholar
  7. Hawkins,C. J., Uren,A. G., Hacker,G., Medcalf,R. L. & Vaux,D. L. Inhibition of interleukin 1β-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc. Natl Acad. Sci. USA 93, 13786–13790 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  8. Deveraux,Q. L., Takahashi,R., Salvesen,G. S. & Reed,J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).
    Article ADS CAS PubMed Google Scholar
  9. Roy,N., Deveraux,Q. L., Takahashi,R., Salvesen,G. S. & Reed,J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  10. Takahashi,R. et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273, 7787–7790 (1998).
    Article CAS PubMed Google Scholar
  11. Tamm,I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspases, and anti cancer drugs. Cancer Res. 58, 5315–5320 (1998).
    CAS PubMed Google Scholar
  12. Uren,A. G., Coulsen,E. J. & Vaux,D. L. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem. Sci. 23, 159–162 (1998).
    Article CAS PubMed Google Scholar
  13. Schwabe,J. W. R. & Klug,A. Zinc mining for protein domains. Nature Struct. Biol. 1, 345–349 (1994).
    Article CAS PubMed Google Scholar
  14. Hansen,M. R., Mueller,L. & Pardi,A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nature Struct. Biol. 5, 1065–1074 (1998).
    Article CAS PubMed Google Scholar
  15. Clore,G. M., Starich,M. R. & Gronenborn,A. M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572 (1998).
    Article CAS Google Scholar
  16. Thornberry,N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911 (1997).
    Article CAS PubMed Google Scholar
  17. Rotunda,J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3, 619–625 (1996).
    Article Google Scholar
  18. Hinds,M. G., Norton,R. S., Vaux,D. L. & Day,C. L. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Struct. Biol. 6, 648–651 (1999).
    Article CAS PubMed Google Scholar
  19. Clore,G. M. & Gronenborn,A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).
    Article CAS PubMed Google Scholar
  20. Neri,D., Szyperski,T., Otting,G., Senn,H. & Wüthrich,K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).
    Article CAS PubMed Google Scholar
  21. Vuister,G. W. & Bax,A. Quantitative J correlation: A new approach for measuring homonuclear three-bond J (HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).
    Article CAS Google Scholar
  22. Hu,J.-S., Grzesiek,S. & Bax,A. Two-dimensional NMR methods for determining χ1 angles of aromatic residues in proteins from three-bond JC′Cγ and JNCγ couplings. J. Am. Chem. Soc. 119, 1803–1804 (1997).
    Article CAS Google Scholar
  23. Cornilescu,G., Delaglio,F. & Bax,A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).
    Article CAS PubMed Google Scholar
  24. Stein,E. G., Rice,L. M. & Brünger,A. T. Torsion angle molecular dynamics: a new efficient tool for NMR structure calculation. J. Magn. Reson. Ser. B 124, 154–164 (1997).
    Article ADS CAS Google Scholar
  25. Nilges,M., Gronenborn,A. M., Brünger,A. T. & Clore,G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).
    Article CAS PubMed Google Scholar
  26. Brünger,A. T. X-PLOR 3.1 Manual (Yale Univ. Press, New Haven, 1992).
    Google Scholar
  27. Tjandra,N., Omichinski,J. G., Gronenborn,A. M., Clore,G. M. & Bax,A. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732–738 (1997).
    Article CAS PubMed Google Scholar
  28. Rance,M., Loria,J. P. & Palmer,A. G. III Sensitivity improvement of transverse relaxation-optimized spectroscopy. J. Magn. Res. 136, 92–101 (1999).
    Article ADS CAS Google Scholar
  29. Pervushin,K., Riek,R., Wider,G. & Wüthrich,K. Attenuated _T_2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 (1997).
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Carson,M. J. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).
    Article CAS Google Scholar

Download references