SLAM (CDw150) is a cellular receptor for measles virus (original) (raw)
Oldstone, M. B. A. Viruses, Plagues, & History (Oxford Univ. Press, New York, 1998). Google Scholar
Griffin, D. E. & Bellini, W. J. in Fields Virology (eds. Fields, B. N. et al.) 1267–1312 (Lippincott-Raven, Philadelphia, 1996). Google Scholar
Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol.67, 6025–6032 (1993). CASPubMedPubMed Central Google Scholar
Dorig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell75, 295–305 ( 1993). ArticleCASPubMed Google Scholar
Buckland, R. & Wild, T. F. Is CD46 the receptor for measles virus? Virus Res.48, 1– 9 (1997). ArticleCASPubMed Google Scholar
Kobune, F., Sakata, H. & Sugiura, A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J. Virol.64, 700–705 (1990). CASPubMedPubMed Central Google Scholar
Kobune, F. et al. Nonhuman primate models of measles. Lab. Anim. Sci.46, 315–320 ( 1996). CASPubMed Google Scholar
Schneider-Schaulies, J. et al. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc. Natl Acad. Sci. USA92, 3943–3947 ( 1995). ArticleADSCASPubMedPubMed Central Google Scholar
Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & Ter Meulen, V. Differential downregulation of CD46 by measles virus strains. J. Virol.69, 7257–7259 (1995). CASPubMedPubMed Central Google Scholar
Lecouturier, V. et al. Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J. Virol.70, 4200– 4204 (1996). CASPubMedPubMed Central Google Scholar
Hsu, E. C. et al. A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J. Virol.72, 2905– 2916 (1998). CASPubMedPubMed Central Google Scholar
Tanaka, K., Xie, M. & Yanagi, Y. The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch. Virol.143, 213–225 ( 1998). ArticleCASPubMed Google Scholar
Tatsuo, H. et al. Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J. Virol.74, 4139–4145 (2000). ArticleCASPubMedPubMed Central Google Scholar
Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants by a novel eukaryotic vector. Gene108, 193–200 (1991). ArticleCASPubMed Google Scholar
Sidorenko, S. P. & Clark, E. A. Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J. Immunol.151, 4614– 4624 (1993). CASPubMed Google Scholar
Huber, M. et al. Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology185, 299– 308 (1991). ArticleCASPubMed Google Scholar
Aversa, G. et al. SLAM and its role in T cell activation and Th cell responses. Immunol. Cell Biol.75, 202– 205 (1997). ArticleCASPubMed Google Scholar
Aversa, G., Chang, C.-C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J. Immunol.158, 4036–4044 (1997). CASPubMed Google Scholar
McChesney, M. B. et al. Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology233, 74– 84 (1997). ArticleCASPubMed Google Scholar
Liszewski, M. K., Post, T. W. & Atkinson, J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol.9, 431–455 (1991). ArticleCASPubMed Google Scholar
Yanagi, Y., Cubitt, B. A. & Oldstone, M. B. A. Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology187, 280– 289 (1992). ArticleCASPubMed Google Scholar
Schlender, J. et al. Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc. Natl Acad. Sci. USA93, 13194– 13199 (1996). ArticleADSCASPubMedPubMed Central Google Scholar
Punnonen, J. et al. Soluble and membrane-bound forms of signaling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J. Exp. Med.185, 993 –1004 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature395, 462–469 (1998). ArticleADSCASPubMed Google Scholar
Mikhalap, S. V. et al. CDw150 associates with Src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J. Immunol.162, 5719–5727 ( 1999). CASPubMed Google Scholar
Griffin, D. E. & Ward, B. J. Differential CD4 T cell activation in measles. J. Infect. Dis.168, 275–281 (1993). ArticleCASPubMed Google Scholar
McFarlin, D. E., Bellini, W. J., Mingioli, E. S., Behar, T. N. & Trudgett, A. Monospecific antibody to the haemagglutinin of measles virus. J. Gen. Virol.48, 425 –429 (1980). ArticleCASPubMed Google Scholar