Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover (original) (raw)
Miyoshi, Y. et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc. Natl Acad. Sci. USA89, 4452–4456 (1992). ArticleCAS Google Scholar
Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). ArticleCAS Google Scholar
Laken et al. Analysis of masked mutations in familial adenomatous polyposis. Proc. Natl Acad. Sci. USA96, 2322–2326 (1999). ArticleCAS Google Scholar
Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumours: mutation cluster region in the APC gene. Hum. Mol. Gen.1, 229–233 (1992). ArticleCAS Google Scholar
Polakis, P. The adenomatous polyposis coli (APC) tumour suppressor. Biochim. Biophys. Acta1332, F127–F147 (1997). CAS Google Scholar
Bienz, M. APC: The plot thickens. Curr. Opin. Genet. Dev.9, 595–603 (1999). ArticleCAS Google Scholar
Rubinfeld, B. et al. Association of the APC gene product with beta-catenin. Science262, 1731–1734 ( 1993). ArticleCAS Google Scholar
Su, L-K., Vogelstein B. & Kinzler, K. W. Association of the APC tumour suppressor protein with catenins. Science262, 1734– 1737 (1993). ArticleCAS Google Scholar
Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumour suppressor protein. Proc. Natl Acad. Sci. USA92, 3046– 3050 (1995). ArticleCAS Google Scholar
Gumbiner, B.M. Carcinogenesis: A balance between β-catenin and APC. Curr. Biol.7, R443–R446 ( 1997). ArticleCAS Google Scholar
Morin, P. J. β-catenin signaling and cancer. BioEssays21, 1021–1030 (1999). ArticleCAS Google Scholar
Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science287, 1606–1609 (2000). ArticleCAS Google Scholar
Morin, P. J. et al. Activation of β-catenin-TCF signalling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCAS Google Scholar
Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science275, 1790– 1792 (1997). ArticleCAS Google Scholar
Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genet.24, 245–250 ( 2000). ArticleCAS Google Scholar
He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 ( 1998). ArticleCAS Google Scholar
Aoki, M., Hecht, A., Kruse, U., Kemler, R. & Vogt, P. K. Nuclear endpoint of Wnt signalling: Neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc. Natl Acad. Sci. USA96, 139–144 (1999). ArticleCAS Google Scholar
Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature398, 422–426 (1999). ArticleCAS Google Scholar
Smith, K. J., Levy, D. B., Maupin, P., Pollard, T. D., Vogelstein, B. & Kinzler, K. W. Wild-type but not mutant APC associates with the microtubule cytoskeleton . Cancer Res.54, 3672– 3675 (1994). CAS Google Scholar
Munemitsu, S., Souza, B., Muller, O., Albert, I., Rubinfeld, B. & Polakis, P. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res.54, 3676–3681 (1994). CAS Google Scholar
Mimori-Kiyosue, Y, Shiina, N. & Tsukita, S. Adenomatous Polyposis Coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol.148, 505–517 (2000). ArticleCAS Google Scholar
Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA94, 3034–3039 (1997). ArticleCAS Google Scholar
Efstathiou, J. A. et al. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc. Natl Acad. Sci. USA95, 3122–3127 (1998). ArticleCAS Google Scholar
Deka, J. et al. The APC protein binds to A/T rich DNA sequences. Oncogene18, 5654–5661 ( 1999). ArticleCAS Google Scholar
Miyashiro, I. et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene11, 89–96 ( 1995). CAS Google Scholar
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell90, 1051–1060 (1997). ArticleCAS Google Scholar
Stade, K., Ford, C. S., Guthrie, C. & Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell90, 1041–1050 (1997). ArticleCAS Google Scholar
Neville, M., Stutz, F., Lee, L., Davis, L. I. & Rosbash, M. The importin–beta family member CRM1p bridges the interaction between Rev and the nuclear pore complex during nuclear export . Curr. Biol.7, 767–775 (1997). ArticleCAS Google Scholar
Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science278, 141– 144 (1997). ArticleCAS Google Scholar
Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature390, 308 –311 (1997). ArticleCAS Google Scholar
Gorlich, D. Transport into and out of the cell nucleus. EMBO J.17, 2721–2727 (1998). ArticleCAS Google Scholar
Henderson, B. R. and Eleftheriou, A. A comparison of the activity, sequence specificity and CRM1-dependence of different nuclear export signals. Exp. Cell Res.256, 213– 224 (2000). ArticleCAS Google Scholar
Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J.17, 554–564 (1998). ArticleCAS Google Scholar
Bogerd, H. P., Fridell, R. A., Benson, R. E., Hua, J. & Cullen, B. R. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol.16, 4207–4214 (1996). ArticleCAS Google Scholar
Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to Crm1. Exp. Cell Res.242, 540–547 (1998). ArticleCAS Google Scholar
Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL , and its interaction with β-catenin. Cancer Res.58, 5176–5181 (1998). CAS Google Scholar
van Es, J.H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr. Biol.9, 105 –108 (1999). ArticleCAS Google Scholar
Joslyn, G., Richardson, D. S., White, R. & Alber, T. Dimer formation by an N-terminal coiled coil in the APC protein. Proc. Natl. Acad. Sci. USA90, 11109– 11113 (1993). ArticleCAS Google Scholar
Su, L-K. et al. Association between wild-type and mutant APC gene products. Cancer Res.53, 2728–2731 (1993). CAS Google Scholar
Groden, J. et al. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumour suppressor gene. Cancer Res.55, 1531–1539 (1995). CAS Google Scholar
Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science253, 665– 669 (1991). ArticleCAS Google Scholar
Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumour suppressor, β-catenin and GSK3β. Curr. Biol.8, 573– 581 (1998). ArticleCAS Google Scholar
Su, L-K. et al. APC binds to the novel protein EB1. Cancer Res.55, 2972–2977 (1995). CAS Google Scholar
Matsumine, A. et al. Binding of APC to the human homolog of the Drosophila Discs Large tumour suppressor protein. Science272, 1020–1023 (1996). ArticleCAS Google Scholar
Hatashi, S. et al. A Drosophila homolog of the tumour suppressor gene adenomatous polyposis coli down-regulates beta-catenin but its zygotic expression is not essential for the regulation of Armadillo. Proc. Natl. Acad. Sci. USA94, 242–247 ( 1997). Article Google Scholar
Hengel, J. V., Vanhoenacker, P., Staes, K. & van Roy, F. Nuclear localization of the p120ctn Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl. Acad. Sci. USA96, 7980– 7985 (1999). Article Google Scholar
Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol.141 , 1433–1448 (1998). ArticleCAS Google Scholar
Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol.8, 181–190 (1998). ArticleCAS Google Scholar
Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner . Mol. Biol. Cell10, 1119– 1131 (1999). ArticleCAS Google Scholar
Prieve, M.G. & Waterman, M.L. Nuclear localization and formation of β-catenin-lymphoid enhancer factor 1 complexes are not sufficient for activation of gene expression. Mol. Cell. Biol.19, 4503–4515 (1999). ArticleCAS Google Scholar