Lipid rafts and signal transduction (original) (raw)
Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol.14, 111–136 (1998). ArticleCASPubMed Google Scholar
Sankaram, M. B. & Thompson, T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry29, 10670–10675 (1990). ArticleCASPubMed Google Scholar
Simons, K. & van Meer, G. Lipid sorting in epithelial cells . Biochemistry27, 6197– 6202 (1988). ArticleCASPubMed Google Scholar
Fridriksson, E. K. et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry38, 8056– 8063 (1999). ArticleCASPubMed Google Scholar
Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA91, 12130– 12134 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hooper, N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol.16, 145–156 (1999). ArticleCASPubMed Google Scholar
Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta1451, 1–16 (1999). ArticleCASPubMed Google Scholar
Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem.274, 12049–12054 (1999). ArticleCASPubMed Google Scholar
Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J.16, 5501–5508 (1997). ArticleCASPubMedPubMed Central Google Scholar
Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. & Brown, D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem.274, 3910–3917 (1999). ArticleCASPubMed Google Scholar
Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol.141, 929– 942 (1998).The first demonstration that clusters of rafts segregate away from non-raft proteins. ArticleCASPubMedPubMed Central Google Scholar
Palade, G. E. The fine structure of blood capillaries. J. Appl. Phys.24, 1424 (1953). Google Scholar
Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol.127, 1217–1232 (1994). ArticleCASPubMed Google Scholar
Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol.136, 137–154 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Vogel, U., Sandvig, K. & van Deurs, B. Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J. Cell Sci.111, 825–832 ( 1998). CASPubMed Google Scholar
Renkonen, O., Kaarainen, L., Simons, K. & Gahmberg, C. G. The lipid class composition of Semliki forest virus and plasma membranes of the host cells. Virology46, 318– 326 (1971). ArticleCASPubMed Google Scholar
Levis, G. M. & Evangelatos, G. P. Lipid composition of lymphocyte plasma membrane from pig mesenteric lymph node. Biochem. J.156, 103–110 (1976). ArticleCASPubMedPubMed Central Google Scholar
Brugger, B. et al. Segregation from COPI–coated vesicles of sphingomyelin and cholesterol. J. Cell Biol. (in the press).
Keller, P. & Simons, K. Post-Golgi biosynthetic trafficking . J. Cell Sci.110, 3001– 3009 (1997). CASPubMed Google Scholar
Ledesma, M. D., Simons, K. & Dotti, C. G. Neuronal polarity: essential role of protein–lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA95, 3966–3971 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mukherjee, S. & Maxfield, F. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic1, 203–211 (2000). ArticleCASPubMed Google Scholar
Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol.1, 386–388 (1999). ArticleCASPubMed Google Scholar
Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol.147, 447–461 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells . J. Cell Biol.148, 997– 1008 (2000).Individual raft size is measured by photonic force microscopy. ArticleCASPubMedPubMed Central Google Scholar
Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature394 , 798–801 (1998). ArticleCASPubMed Google Scholar
Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature394, 802–805 ( 1998). ArticleCASPubMed Google Scholar
Kenworthy, A. K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell11, 1645–1655 ( 2000). ArticleCASPubMedPubMed Central Google Scholar
Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell68, 533– 544 (1992).A pioneering demonstration that GPI-anchored proteins and influenza haemagglutinin remain associated with sphingolipids and cholesterol after Triton X-100 extraction. ArticleCASPubMed Google Scholar
Waugh, M. G., Lawson, D. & Hsuan, J. J. Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem. J.337, 591–597 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem.275, 261–270 (2000).Feeding cells with polyunsaturated fatty acids leads to dissociation of doubly acylated proteins from rafts. ArticleCASPubMed Google Scholar
Simons, M. et al. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol. Biol. Cell10, 3187–3196 ( 1999). ArticleCASPubMedPubMed Central Google Scholar
Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA92, 9201–9205 ( 1995). ArticleCASPubMedPubMed Central Google Scholar
Sheets, E. D., Holowka, D. & Baird, B. Membrane organization in immunoglobulin E receptor signaling . Curr. Opin. Chem. Biol.3, 95– 99 (1999). ArticleCASPubMed Google Scholar
Baird, B., Sheets, E. D. & Holowka, D. How does the plasma membrane participate in cellular signaling by receptors for immunoglobulin E? Biophys. Chem.82, 109–119 (1999). ArticleCASPubMed Google Scholar
Stauffer, T. P. & Meyer, T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol.139, 1447–1454 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Holowka, D., Sheets, E. D. & Baird, B. Interactions between FcɛRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci.113, 1009–1019 (2000). CASPubMed Google Scholar
Sheets, E. D., Holowka, D. & Baird, B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcɛRI and their association with detergent-resistant membranes. J. Cell Biol.145, 877– 887 (1999).This paper is the culmination of a series of studies showing the role of rafts in IgE receptor signalling. ArticleCASPubMedPubMed Central Google Scholar
Goitsuka, R. et al. A BASH/SLP-76-related adaptor protein MIST/Clnk involved in IgE receptor-mediated mast cell degranulation. Int. Immunol.12, 573–580 (2000). ArticleCASPubMed Google Scholar
Janes, P. W., Ley, S. C., Magee, A. I. & Kabouridis, P. S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin. Immunol.12, 23–34 ( 2000). ArticleCASPubMed Google Scholar
Langlet, C., Bernard, A. M., Drevot, P. & He, H. T. Membrane rafts and signaling by the multichain immune recognition receptors . Curr. Opin. Immunol.12, 250– 255 (2000). ArticleCASPubMed Google Scholar
Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity9, 239–246 (1998). ArticleCASPubMed Google Scholar
Brdicka, T., Cerny, J. & Horejsi, V. T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun.248, 356–360 (1998). ArticleCASPubMed Google Scholar
Lin, J., Weiss, A. & Finco, T. S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem.274 , 28861–28864 (1999). ArticleCASPubMed Google Scholar
Moran, M. & Miceli, M. C. Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity9, 787–796 (1998). ArticleCASPubMed Google Scholar
Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science254, 1016–1019 (1991). ArticleCASPubMed Google Scholar
Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J.17, 5334–5348 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity8, 723– 732 (1998).Detailed characterization of several proteins participating in T-cell activation and their raft association. ArticleCASPubMed Google Scholar
Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains . Science283, 680–682 (1999).Antibody-coated beads are used to activate clustering of raft components in T-cell signalling. ArticleCASPubMed Google Scholar
Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell96, 1– 4 (1999). ArticleCASPubMed Google Scholar
van der Merwe, A. P., Davis, S. J., Shaw, A. S. & Dustin, M. L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin. Immunol.12, 5–21 (2000). ArticleCAS Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221– 227 (1999). ArticleCASPubMed Google Scholar
Zhang, W. & Samelson, L. E. The role of membrane-associated adaptors in T cell receptor signalling. Semin. Immunol.12, 35–41 (2000). ArticleCASPubMed Google Scholar
Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nature Immunol.1, 156–162 (2000). ArticleCAS Google Scholar
Tansey, M. G., Baloh, R. H., Milbrandt, J. & Johnson, E. M. Jr GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron25, 611– 623 (2000).The demonstration that GDNF signalling is a raft-dependent process. ArticleCASPubMed Google Scholar
Poteryaev, D. et al. GDNF triggers a novel ret-independent src kinase family-coupled signaling via a GPI-linked GDNF receptor α1. FEBS Lett.463, 63–66 (1999). ArticleCASPubMed Google Scholar
Trupp, M., Scott, R., Whittemore, S. R. & Ibanez, C. F. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J. Biol. Chem.274, 20885–20894 (1999). ArticleCASPubMed Google Scholar
Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol.1, 98–105 (1999). This paper shows that H-Ras signals in rafts and K-Ras signals outside rafts. ArticleCASPubMed Google Scholar
Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell63, 133–139 ( 1990). ArticleCASPubMed Google Scholar
Incardona, J. P. & Eaton, S. Cholesterol in signal transduction. Curr. Opin. Cell Biol.12, 193–203 (2000). ArticleCASPubMed Google Scholar
Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling proteins in animal development. Science274, 255– 259 (1996). ArticleCASPubMed Google Scholar
Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem.273, 14037– 14045 (1998). ArticleCASPubMed Google Scholar
Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell99, 803–815 ( 1999). ArticleCASPubMed Google Scholar
Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol.29, 556 –562 (1999). ArticleCASPubMed Google Scholar
Laux, T. et al. GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism . J. Cell Biol.149, 1455– 1472 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pike, L. J. & Miller, J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem.273, 22298– 22304 (1998). ArticleCASPubMed Google Scholar
Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol.10, 311–320 ( 2000). ArticleCASPubMed Google Scholar
Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K. & Hakomori, S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate–carbohydrate interaction in mouse melanoma B16 cells. J. Biol. Chem.273, 9130–9138 (1998). ArticleCASPubMed Google Scholar
Roper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol–based lipid microdomains within the apical plasma membrane of epithelial cells. Nature Cell Biol.2, 582–592 (2000). ArticleCASPubMed Google Scholar
Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science264, 1948–1951 (1994). ArticleCASPubMed Google Scholar
Parton, R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae . J. Histochem. Cytochem.42, 155– 166 (1994). ArticleCASPubMed Google Scholar
Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem.44, 929–941 (1996). ArticleCASPubMed Google Scholar
Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol.149, 1131 –1142 (2000).Clear visualization of raft clustering during IgE signalling by immuno-electron microscopy. ArticleCASPubMedPubMed Central Google Scholar
Sargiacomo, M., Sudol, M., Tang, Z. & Lisanti, M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol.122, 789–807 (1993). ArticleCASPubMed Google Scholar
Kurzchalia, T., Hartmann, E. & Dupree, P. Guilt by insolubility: Does a protein's detergent insolubility reflect caveolar location. Trends Cell Biol.5, 187–189 (1995). CASPubMed Google Scholar
Smart, E. J., Ying, Y. S., Mineo, C. & Anderson, R. G. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl Acad. Sci. USA92, 10104– 10108 (1995). ArticleCASPubMedPubMed Central Google Scholar
Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science269, 1435–1439 (1995). ArticleCASPubMed Google Scholar
Stan, R. V. et al. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol. Biol. Cell8 , 595–605 (1997). ArticleCASPubMedPubMed Central Google Scholar
Oh, P. & Schnitzer, J. E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J. Biol. Chem.274, 23144–23154 (1999). ArticleCASPubMed Google Scholar
Kurzchalia, T. V. & Parton, R. G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol.11, 424–431 (1999). ArticleCASPubMed Google Scholar
Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J.19, 892– 901 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cheng, P. C., Dykstra, M. L., Mitchell, R. N. & Pierce, S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting . J. Exp. Med.190, 1549– 1560 (1999). ArticleCASPubMedPubMed Central Google Scholar
Couet, J., Sargiacomo, M. & Lisanti, M. P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem.272, 30429 –30438 (1997). ArticleCASPubMed Google Scholar
Mastick, C. C., Brady, M. J. & Saltiel, A. R. Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol.129, 1523– 1531 (1995). ArticleCASPubMed Google Scholar
Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron22, 511 –524 (1999). ArticleCASPubMed Google Scholar
Bilderback, T. R., Gazula, V. R., Lisanti, M. P. & Dobrowsky, R. T. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J. Biol. Chem.274, 257– 263 (1999). ArticleCASPubMed Google Scholar
Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell94, 625–634 (1998). ArticleCASPubMed Google Scholar
Krauss, K. & Altevogt, P. Integrin leukocyte function-associated antigen-1 mediated cell binding can be activated by clustering of membrane rafts. J. Biol. Chem.274, 36921– 36927 (1999). ArticleCASPubMed Google Scholar
Shaul, P. W. et al. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem.271, 6518– 6522 (1996). ArticleCASPubMed Google Scholar
Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J. & Sessa, W. C. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem.271, 27237–27240 (1996). ArticleCASPubMed Google Scholar