Role for the p53 homologue p73 in E2F-1-induced apoptosis (original) (raw)

References

  1. Phillips, A., Bates, S., Ryan, K., Helin, K. & Vousden, K. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853– 1863 (1997).
    Article CAS Google Scholar
  2. Hsieh, J., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11, 1840– 1852 (1997).
    Article CAS Google Scholar
  3. Wu, X. & Levine, A. J. p53 and E2F1 Cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).
    Article ADS CAS Google Scholar
  4. Qin, X. Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918– 10922 (1994).
    Article ADS CAS Google Scholar
  5. Holmberg, C., Helin, K., Sehested, M. & Karlstrom, O. E2F-1-Induced p53-independent apoptosis in transgenic mice. Oncogene 17, 143–155 (1998).
    Article CAS Google Scholar
  6. Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol. 17, 1049–1056 ( 1997).
    Article CAS Google Scholar
  7. Agah, R. et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J. Clin. Invest. 100, 2722–2728 ( 1997).
    Article CAS Google Scholar
  8. Hunt, K. et al. Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res. 57, 4722– 4726 (1997).
    CAS PubMed Google Scholar
  9. Sherr, C. Tumor surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998).
    Article CAS Google Scholar
  10. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 ( 1998).
    Article ADS CAS Google Scholar
  11. Kaelin, W. G. The emerging p53 gene family. J. Natl Cancer Institute 91, 594–598 (1999).
    Article CAS Google Scholar
  12. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).
    Article CAS Google Scholar
  13. Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 ( 1992).
    Article CAS Google Scholar
  14. Davison, T. et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274, 18709–10814 (1999).
    Article CAS Google Scholar
  15. Lomax, M., Barnes, D., Hupp, T., Picksley, S. & Camplejohn, R. Characterization of p53 oligomerization domain mutations isolated ffrom Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17, 643–649 ( 1998).
    Article CAS Google Scholar
  16. Davison, T., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. Characterization of the oligomerization defects of two p53 mutants found in families with LI-Fraumeni and Li-Fraumeni syndrome. Oncogene 17, 651–656 ( 1998).
    Article CAS Google Scholar
  17. Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homologue p73. Mol. Cell. Biol. 18, 6316– 24 (1998).
    Article CAS Google Scholar
  18. Phillips, A., Ernst, M., Bates, S., Rice, N. & Vousden, K. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771– 781 (1999).
    Article CAS Google Scholar
  19. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642 –645 (2000).
    Article ADS CAS Google Scholar
  20. Fueyo, J. et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumour growth in vitro and in vivo. Nature Med. 4, 685–690 (1998).
    Article CAS Google Scholar
  21. Chen, Y. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).
    Article ADS CAS Google Scholar
  22. Jost, C., Marin, M. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191–194 (1997).
    Article ADS CAS Google Scholar
  23. Brugarolas, J., Bronson, R. & Jacks, T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J. Cell Biol. 141, 503–514 (1998).
    Article CAS Google Scholar
  24. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature 404, 99–103 (2000).
    Article ADS CAS Google Scholar
  25. De Laurenzi, V. et al. Two new p73 splice variants, γ and δ, with different transcriptional activity. J. Exp. Med. 188, 1763–1768 (1998).
    Article CAS Google Scholar
  26. Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 1–20 (1994 ).
    Article Google Scholar
  27. Kaghad, M. et al. Monoallelically Expressed Gene Related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809–819 ( 1997).
    Article CAS Google Scholar
  28. Weber, K. L., Bolander, M. E. & Sarkar, G. Rapid acquisition of unknown DNA sequence adjacent to a known segment by multiplex restriction site PCR. BioTechniques 25, 415–419 ( 1998).
    Article CAS Google Scholar
  29. Yang, A. et al. p63, a p53 homologue at 3q27-29, encodes multiple products with transactivating, death Inducing, and dominant-negative activities. Mol. Cell 2, 305–316 ( 1998).
    Article CAS Google Scholar

Download references