Role for the p53 homologue p73 in E2F-1-induced apoptosis (original) (raw)
References
Phillips, A., Bates, S., Ryan, K., Helin, K. & Vousden, K. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev.11, 1853– 1863 (1997). ArticleCAS Google Scholar
Hsieh, J., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev.11, 1840– 1852 (1997). ArticleCAS Google Scholar
Wu, X. & Levine, A. J. p53 and E2F1 Cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA91, 3602–3606 (1994). ArticleADSCAS Google Scholar
Qin, X. Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA91, 10918– 10922 (1994). ArticleADSCAS Google Scholar
Holmberg, C., Helin, K., Sehested, M. & Karlstrom, O. E2F-1-Induced p53-independent apoptosis in transgenic mice. Oncogene17, 143–155 (1998). ArticleCAS Google Scholar
Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol.17, 1049–1056 ( 1997). ArticleCAS Google Scholar
Agah, R. et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J. Clin. Invest.100, 2722–2728 ( 1997). ArticleCAS Google Scholar
Hunt, K. et al. Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res.57, 4722– 4726 (1997). CASPubMed Google Scholar
Sherr, C. Tumor surveillance via the ARF–p53 pathway. Genes Dev.12, 2984–2991 (1998). ArticleCAS Google Scholar
Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature395, 124–125 ( 1998). ArticleADSCAS Google Scholar
Kaelin, W. G. The emerging p53 gene family. J. Natl Cancer Institute91, 594–598 (1999). ArticleCAS Google Scholar
Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev.12, 2245–2262 (1998). ArticleCAS Google Scholar
Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol.12, 5581–5592 ( 1992). ArticleCAS Google Scholar
Davison, T. et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem.274, 18709–10814 (1999). ArticleCAS Google Scholar
Lomax, M., Barnes, D., Hupp, T., Picksley, S. & Camplejohn, R. Characterization of p53 oligomerization domain mutations isolated ffrom Li-Fraumeni and Li-Fraumeni like family members. Oncogene17, 643–649 ( 1998). ArticleCAS Google Scholar
Davison, T., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. Characterization of the oligomerization defects of two p53 mutants found in families with LI-Fraumeni and Li-Fraumeni syndrome. Oncogene17, 651–656 ( 1998). ArticleCAS Google Scholar
Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homologue p73. Mol. Cell. Biol.18, 6316– 24 (1998). ArticleCAS Google Scholar
Phillips, A., Ernst, M., Bates, S., Rice, N. & Vousden, K. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell4, 771– 781 (1999). ArticleCAS Google Scholar
Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature407, 642 –645 (2000). ArticleADSCAS Google Scholar
Fueyo, J. et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumour growth in vitro and in vivo. Nature Med.4, 685–690 (1998). ArticleCAS Google Scholar
Chen, Y. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA96, 4325–4329 (1999). ArticleADSCAS Google Scholar
Jost, C., Marin, M. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature389, 191–194 (1997). ArticleADSCAS Google Scholar
Brugarolas, J., Bronson, R. & Jacks, T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J. Cell Biol.141, 503–514 (1998). ArticleCAS Google Scholar
Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumors. Nature404, 99–103 (2000). ArticleADSCAS Google Scholar
De Laurenzi, V. et al. Two new p73 splice variants, γ and δ, with different transcriptional activity. J. Exp. Med.188, 1763–1768 (1998). ArticleCAS Google Scholar
Krek, W. et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell78, 1–20 (1994 ). Article Google Scholar
Kaghad, M. et al. Monoallelically Expressed Gene Related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell90, 809–819 ( 1997). ArticleCAS Google Scholar
Weber, K. L., Bolander, M. E. & Sarkar, G. Rapid acquisition of unknown DNA sequence adjacent to a known segment by multiplex restriction site PCR. BioTechniques25, 415–419 ( 1998). ArticleCAS Google Scholar
Yang, A. et al. p63, a p53 homologue at 3q27-29, encodes multiple products with transactivating, death Inducing, and dominant-negative activities. Mol. Cell2, 305–316 ( 1998). ArticleCAS Google Scholar