A regulator of transcriptional elongation controls vertebrate neuronal development (original) (raw)

References

  1. Greenblatt, J. RNA polmerase II holoenzyme and transciptional regulation. Curr. Opin. Cell Biol. 9, 310–319 (1997).
    Article CAS Google Scholar
  2. Shilatifard, A., Conaway, J. W. & Conaway, R. C. Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II. Curr. Opin. Genet. Dev. 7, 199–204 (1997).
    Article CAS Google Scholar
  3. Uptain, S. M., Kane, C. M. & Chamberlain, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117– 172 (1997).
    Article CAS Google Scholar
  4. Guo, S. et al. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev. Biol. 208, 473–487 (1999).
    Article CAS Google Scholar
  5. Swanson, M. S., Malone, E. A. & Winston, F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell Biol. 11, 3009–3019 (1991).
    Article CAS Google Scholar
  6. Swanson, M. S. & Winston, F. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132, 325–326 (1992).
    CAS PubMed PubMed Central Google Scholar
  7. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).
    Article CAS Google Scholar
  8. Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D. & Hande, H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17, 7395– 7403 (1998).
    Article CAS Google Scholar
  9. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).
    Article CAS Google Scholar
  10. Yamaguchi, Y. et al. Structure and function of the human transcription elongation factor DSIF. J. Biol. Chem. 274, 8085– 8092 (1999).
    Article CAS Google Scholar
  11. Wada, T. et al. DSFI, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).
    Article CAS Google Scholar
  12. Yamaguchi, Y., Wada, T. & Handa, H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3, 9– 15 (1998).
    Article CAS Google Scholar
  13. Cepko, C. L. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9, 37–46 (1999).
    Article CAS Google Scholar
  14. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
    Article CAS Google Scholar
  15. Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y. & Eguchi, G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles of the whole body by using promoters of zebrafish origin. Dev. Biol. 192, 289 –299 (1997).
    Article CAS Google Scholar
  16. Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).
    Article CAS Google Scholar
  17. Sullivan, S. L., Ward, D. F. & Gottesman, M. E. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination. J. Bacteriol. 174, 1339–1344 ( 1992).
    Article CAS Google Scholar
  18. Kyrpides, N. C., Woese, C. R. & Ouzounis, C. A. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem. 21, 425–426 (1996).
    Article CAS Google Scholar
  19. Hubbard, E. J., Dong, Q., Greenwald, I. Evidence for physical and functional association between EMB-5 and LIN-12 in Caenorhabditis elegans. Science 273, 112–115 (1996).
    Article ADS CAS Google Scholar
  20. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).
    Article ADS CAS Google Scholar
  21. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 ( 1998).
    Article CAS Google Scholar
  22. Anderson, D. J. & Jan, Y. N. in Molecular and Cellular Approaches to Neural Development (ed. Cowan, W. M.) 26 –63 (Oxford Univ. Press, New York, 1997).
    Google Scholar
  23. Zorick, T. S., Syroid, D. E., Brown, A., Gridley, T. & Lemke, G. Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126, 1397–1406 (1999).
    CAS PubMed Google Scholar
  24. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).
    Article CAS Google Scholar
  25. Persons, D. A. et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93, 488– 499 (1999).
    CAS PubMed Google Scholar

Download references