Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex (original) (raw)
Patton, E. E., Willems, A. R. & Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet.14, 236–243 (1998). ArticleCAS Google Scholar
Koepp, D. M., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell97, 431– 434 (1999). ArticleCAS Google Scholar
Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol.15, 435–467 ( 1999). ArticleCAS Google Scholar
Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell91, 209–219 (1997). ArticleCAS Google Scholar
Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell91, 221–230 (1997). ArticleCAS Google Scholar
Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell86 , 263–274 (1996). ArticleCAS Google Scholar
Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell82, 915–925 (1995). ArticleCAS Google Scholar
Sutterlüty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol.1, 207 –214 (1999). Article Google Scholar
Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 ( 1999). ArticleCAS Google Scholar
Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol.9 , 661–664 (1999). ArticleCAS Google Scholar
Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J.19, 2069–2081 ( 2000). ArticleCAS Google Scholar
Aravind, L. & Koonin, E. V. Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J. Mol. Biol.285, 1353–1361 (1999). ArticleCAS Google Scholar
Kobe, B. & Deisenhofer, J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature366, 751–756 ( 1993). ArticleADSCAS Google Scholar
Li, F. N. & Johnston, M. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J.16, 5629–5638 ( 1997). ArticleCAS Google Scholar
Zhou, P. & Howley, P. M. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell2, 571–580 ( 1998). ArticleCAS Google Scholar
Connelly, C. & Hieter, P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell86, 275–285 ( 1996). ArticleCAS Google Scholar
Russell, I. D., Grancell, A. S. & Sorger, P. K. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol.145, 933–950 (1999). ArticleCAS Google Scholar
Lisztwan, J. et al. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J.17, 368–383 (1998). ArticleCAS Google Scholar
Costanzo, M. C. et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res.28, 73–76 ( 2000). ArticleCAS Google Scholar
Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science287, 2204–2215 ( 2000). ArticleCAS Google Scholar
Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol.18, 732– 41 (1998). ArticleCAS Google Scholar
Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science284, 657– 661 (1999). ArticleADSCAS Google Scholar
Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science284, 455–461 ( 1999). ArticleADSCAS Google Scholar
Shirane, M. et al. Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem.274, 13886–13893 (1999). ArticleCAS Google Scholar
Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev.13, 284–294 (1999). ArticleCAS Google Scholar
Kobe, B. & Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature374, 183–186 (1995). ArticleADSCAS Google Scholar
Price, S. R., Evans, P. R. & Nagai, K. Crystal structure of the spliceosomal U2B′′–U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature394, 645–650 ( 1998). ArticleADSCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.176, 307–326 ( 1997). Article Google Scholar
Collaborative Computational Project B. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 ( 1994). Article Google Scholar
Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). Article Google Scholar