The HIC signalling pathway links CO2 perception to stomatal development (original) (raw)
Woodward, F. I. Stomatal numbers are sensitive to CO2 increases from pre-industrial levels. Nature327, 617–618 (1987). ArticleADS Google Scholar
Woodward, F. I. & Kelly, C. K. The influence of CO2 concentration on stomatal density. New Phytol.131, 311–327 (1995). Article Google Scholar
McElwain, J. C. & Chaloner, W. G. Stomatal density and index of fossil plants track atmospheric carbon-dioxide in the paleozoic. Ann. Bot.76, 389–395 (1995). Article Google Scholar
McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary. Science285, 1386–1390 (1999). ArticleCAS Google Scholar
Post-Beittenmiller, D. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.47, 405–430 (1996). ArticleCAS Google Scholar
Topping, J. F., Wei, W. B. & Lindsey, K. Functional tagging of regulatory elements in the plant genome. Development112, 1009–1019 (1991). CASPubMed Google Scholar
Goddijn, O. J. M., Lindsey, K., van der Lee, F. M., Klap, J. C. & Sijmons, P. C. Differential gene-expression in nematode-induced feeding structures of transgenic plants harbouring GUSA fusion constructs. Plant J.4, 863–873 (1993). ArticleCAS Google Scholar
Yang, M. & Sack, F. D. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell7, 2227–2239 (1995). ArticleCAS Google Scholar
Berger, D. & Altman, T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev.14, 1119–1131 (2000). CASPubMedPubMed Central Google Scholar
Todd, J., Post-Beittenmiller, D. & Jaworski, J. G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J.17, 119–130 (1999). ArticleCAS Google Scholar
Lassner, M. W., Lardizabal, K. & Metz, J. G. A jojoba β-keto-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell8, 281–292 (1996). CASPubMedPubMed Central Google Scholar
Zeiger, E. & Stebbins, L. Developmental genetics in barley: a mutant for stomatal development. Am. J. Bot.59, 143–148 (1972). Article Google Scholar
Jenks, M. A., Tuttle, H. A., Eigenbrode, S. D. & Feldmann, K. A. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol.108, 369–377, (1995). ArticleCAS Google Scholar
Post-Beittenmiller, D. The cloned Eceriferum genes of Arabidopsis and the corresponding Glossy genes in maize. Plant Physiol. Bioch.36, 157–166 (1998). ArticleCAS Google Scholar
Lolle, S. J., Cheung, A. Y. & Sussex, I. M. fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Dev. Biol.152, 383–392 (1992) ArticleCAS Google Scholar
Lolle, S. J. et al. Developmental regulation of cell interactions in the Arabidopsisfiddlehead–1 mutant: a role for the epidermal cell wall and cuticle. Dev. Biol.189, 311–321 (1997). ArticleCAS Google Scholar
Yephremov, A. et al. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell11, 2187–2201 (1999). ArticleCAS Google Scholar
Larkin, J. C., Marks, M. D., Nadeau, J. & Sack, F. Epidermal cell fate and patterning in leaves. Plant Cell9, 1109–1120 (1997). ArticleCAS Google Scholar
Bünning, E. & Sagromsky, H. Die Bildung des Spaltöffnungsmusters in der Blattepidermis. Z. Naturforsch.3b, 203–216 (1948). Article Google Scholar
Korn, R. W. Evidence in dicots for stomatal patterning by inhibition. Int. J. Plant Sci.154, 367–377 (1993). Article Google Scholar
Neighbour, E. A. et al. A small-scale controlled environment chamber for the investigation of effects of pollutant gases on plants growing at cool or sub-zero temperature. Environ. Pollution64, 155–168 (1990). ArticleCAS Google Scholar
Jefferson, R. A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep.5, 387–405 (1987). ArticleCAS Google Scholar
Beckman, A. A. & Engler, A. A. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Rep.12, 37–42 (1994). Article Google Scholar
Salisbury, E. J. On the causes and ecological significance of stomatal frequency with special reference to woodland flora. Phil. Trans. R. Soc. Lond. B216, 1–65 (1927). ArticleADS Google Scholar
Weyers, J. D. B. & Johansen, L. G. Accurate estimation of stomatal aperture from silicone rubber impressions. New Phytol.101, 109–115 (1985). Article Google Scholar
Poole, I., Weyers, J. D. B., Lawson, T. & Raven, J. A. Variations in stomatal density and index: implications for paleoclimatic reconstructions. Plant Cell Environ.19, 705–712 (1996). Article Google Scholar
Barthels, N. et al. Regulatory sequences of Arabidopsis drive reporter gene expression on nematode feeding structures. Plant Cell9, 2119–2134 (1997). ArticleCAS Google Scholar
Lin, X. Y. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature402, 761–765 (1999). ArticleADSCAS Google Scholar
Gleave, A. P. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol.20, 1203–1207 (1992). ArticleCAS Google Scholar
Valvekens, D., Van Montagu, M. & Van Lijsebettens, M. _Agrobacterium tumefaciens_-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl Acad. Sci. USA85, 5536–5540 (1988). ArticleADSCAS Google Scholar