A Toll-like receptor recognizes bacterial DNA (original) (raw)
Krieg, A. M. Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol.4, 73–76 (1996). ArticleCASPubMed Google Scholar
Lipford, G. B., Heeg, K. & Wagner, H. Bacterial DNA as immune cell activator. Trends Microbiol.6, 496–500 (1998). ArticleCASPubMed Google Scholar
Yamamoto, S., Yamamoto, T. & Tokunaga, T. The discovery of immunostimulatory DNA sequence. Spring. Ser. Immunopathol.22, 11–19 (2000). ArticleCAS Google Scholar
Jakob, T., Walker, P. S., Krieg, A. M., Udey, M. C. & Vogel, J. C. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J. Immunol.161, 3042–3049 (1998). CASPubMed Google Scholar
Sparwasser, T. et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol.28, 2045–2054 (1998). ArticleCASPubMed Google Scholar
Hartmann, G., Weiner, G. J. & Krieg, A. M. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Natl Acad. Sci. USA96, 9305–9310 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Häcker, H. et al. Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells. EMBO J.18, 6973–6982 (1999). ArticlePubMedPubMed Central Google Scholar
Wagner, H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol.73, 329–368 (1999). ArticleCASPubMed Google Scholar
Klinman, D. M., Verthelyi, D., Takeshita, F. & Ishii, K. J. Immune recognition of foreign DNA: a cure for bioterrorism? Immunity11, 123–129 (1999). ArticleCASPubMed Google Scholar
Krieg, A. M. The role of CpG motifs in innate immunity. Curr. Opin. Immunol.12, 35–43 (2000). ArticleCASPubMed Google Scholar
Medzhitov, R. & Janeway, C. A. Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell91, 295–298 (1997). ArticleCASPubMed Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleADSCASPubMed Google Scholar
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA95, 588–593 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Takeuchi, O. et al. TLR6: A novel member of an expanding toll-like receptor family. Gene231, 59–65 (1999). ArticleCASPubMed Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleADSCASPubMed Google Scholar
Hoshino, K. et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol.162, 3749–3752 (1999). CASPubMed Google Scholar
Yoshimura, A. et al. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol.163, 1–5 (1999). CASPubMed Google Scholar
Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science285, 732–736 (1999). ArticleCASPubMed Google Scholar
Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science285, 736–739 (1999). ArticleCASPubMed Google Scholar
Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature401, 811–815 (1999). ArticleADSCASPubMed Google Scholar
Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity11, 443–451 (1999). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol.164, 554–557 (2000). ArticleCASPubMed Google Scholar
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity11, 115–122 (1999). ArticleCASPubMed Google Scholar
Häcker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differential marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med.192, 595–600 (2000). ArticlePubMedPubMed Central Google Scholar
Sparwasser, T. et al. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur. J. Immunol.27, 1671–1679 (1997). ArticleCASPubMed Google Scholar
Lipford, G. B. et al. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J. Immunol.165, 1228–1235 (2000). ArticleCASPubMed Google Scholar
Liang, H., Reich, C. F., Pisetsky, D. S., Lipsky, P. E. The role of cell surface receptors in the activation of human B cells by phosphorothioate oligonucleotides. J. Immunol.165, 1438–1445 (2000). ArticleCASPubMed Google Scholar
Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374, 546–549 (1995). ArticleADSCASPubMed Google Scholar
Macfarlane, D. E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol.160, 1122–1131 (1998). CASPubMed Google Scholar
Häcker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J.17, 6230–6240 (1998). ArticlePubMedPubMed Central Google Scholar
Yi, A. K. & Krieg, A. M. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J. Immunol.161, 4493–4497 (1998). CASPubMed Google Scholar