Diversification of haematopoietic stem cells to specific lineages (original) (raw)
Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities . Science287, 1442–1446 (2000). ArticleCASPubMed Google Scholar
Orkin, S. H. Development of the hematopoietic system. Curr. Opin. Genet. Dev . 6, 597–602 ( 1996). ArticleCASPubMed Google Scholar
Dzierzak, E. & Medvinsky, A. Mouse embryonic hematopoiesis . Trends Genet.11, 359– 366 (1995). ArticleCASPubMed Google Scholar
Moore, M. S. A. & Metcalf, D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol.18, 279–296 ( 1970). ArticleCASPubMed Google Scholar
Medvinsky, A. L., Samoylina, N. L., Muller, A. M. & Dzierzak, E. A. An early pre-liver intraembryonic source of CFU-S in the developing mouse . Nature364, 64–66 (1993).This manuscript provides evidence that intraembryonic HSCs are present in the mouse before the time at which they are detected in the yolk sac, using transplantation into irradiated adult mice as the test system. ArticleCASPubMed Google Scholar
Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell86, 897 –906 (1996). ArticleCASPubMed Google Scholar
Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell86, 907–916 (1996). ArticleCASPubMed Google Scholar
Cumano, A., Dieterlen-Lievre, F. & Godin, I. The splanchnopleura/AGM region is the prime site for the generation of multipotent hemopoietic precursors, in the mouse embryo . Vaccine18, 1621–1623 (2000). ArticleCASPubMed Google Scholar
Godin, I., Dieterlen-Lievre, F. & Cumano, A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8. 5 days postcoitus. Proc. Natl Acad. Sci. USA92, 773–777 (1995). ArticleCASPubMedPubMed Central Google Scholar
Yoder, M. C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity7, 335–344 (1997). ArticleCASPubMed Google Scholar
Yoder, M. C. & Hiatt, K. Murine yolk sac and bone marrow hematopoietic cells with high proliferative potential display different capacities for producing colony-forming cells ex vivo. J. Hematother. Stem Cell Res.8, 421–430 (1999). ArticleCASPubMed Google Scholar
Pardanaud, L., Yassine, F. & Dieterlen-Lievre, F. Relationship between vasculogenesis, angiogenesis, and haemopoiesis during avian ontogeny. Development105 , 473–485 (1989). ArticleCASPubMed Google Scholar
Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny . Development125, 4575– 4583 (1998).This paper reported data in favour of the origin of haematopoietic cells from the vasculature. This work supports the concept of ‘haemogenic endothelium’. ArticleCASPubMed Google Scholar
Pardanaud, L. & Dieterlen-Lievre, F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development126, 617–627 (1999). ArticleCASPubMed Google Scholar
Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development125, 725– 732 (1998).Throughin vitrodifferentiation of embryonic stem cells, this paper provides evidence for the existence of the elusive haemangioblast. ArticleCASPubMed Google Scholar
Tavian, M. et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood87, 67– 72 (1996). ArticleCASPubMed Google Scholar
North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development126, 2563– 2575 (1999). ArticleCASPubMed Google Scholar
Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA93, 3444– 3449 (1996). ArticleCASPubMedPubMed Central Google Scholar
Okuda, T., Deursen, J. v., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321– 330 (1996). ArticleCASPubMed Google Scholar
DeBruijn, M. F. T. R., Speck, N. A., Peeters, M. C. E. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J.19, 2465–2474 (2000). ArticleCAS Google Scholar
Nishikawa, S.-I. et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity8, 761–769 (1998). ArticleCASPubMed Google Scholar
Nishikawa, S. I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. & Kodama, H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin1 cells at a diverging point of endothelial and hemopoietic lineages. Development125, 1747–1757 (1998). ArticleCASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 ( 2000). ArticleCASPubMed Google Scholar
Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science288, 1635–1640 ( 2000). ArticleCASPubMed Google Scholar
Socolovsky, M., Lodish, H. F. & Daley, G. Q. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc. Natl Acad. Sci. USA95, 6573–6575 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Stoffel, R. et al. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc. Natl Acad. Sci. USA96, 698– 702 (1999). ArticleCASPubMedPubMed Central Google Scholar
Orkin, S. H. in Molecular Biology of B-cell and T-cell Development (eds Monroe, J. G. & Rothenberg, E. V.) 41–54 (Humana, Totowa, New Jersery, 1998). Book Google Scholar
Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science251, 761 –766 (1991). ArticleCASPubMed Google Scholar
Kulessa, H., Frampton, J. & Graf, T. GATA-1 reprograms avian myelomonocytic cells into eosinophils, thromboblasts and erythroblasts. Genes Dev.9, 1250–1262 (1995). This paper reports the ability of GATA-1 to alter the phenotype of haematopoietic cells. In contrast to the action of myogenic factors in recipient cells, GATA-1 converts progenitors to three different lineages, depending on the concentration at which it is expressed. ArticleCASPubMed Google Scholar
Visvader, J. E., Elefanty, A. G., Strasser, A. & Adams, J. M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J.11, 4557– 4564 (1992). ArticleCASPubMedPubMed Central Google Scholar
Visvader, J. E., Crossley, M., Hill, J., Orkin, S. H. & Adams, J. M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol. Cell. Biol.15, 634– 641 (1995). ArticleCASPubMedPubMed Central Google Scholar
Visvader, J. & Adams, J. M. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood82, 1493–1501 (1993). ArticleCASPubMed Google Scholar
Nerlov, C., McNagny, K. M., Doderlein, G., Kowenz-Leutz, E. & Graf, T. Distinct C/EBP functions are required for eosinophil lineage commitment and maturation. Genes Dev.12, 2413–2423 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev.12, 2403–2412 (1998). ArticleCASPubMedPubMed Central Google Scholar
McDevitt, M. A., Shivdasani, R. A., Fujiwara, Y., Yang, H. & Orkin, S. H. A ‘knockdown’ mutation created by cis-element gene targeting reveals the dependence of red blood cell maturation on the level of transcription factor GATA-1. Proc. Natl Acad. Sci. USA94, 6781–6785 (1997). ArticleCASPubMedPubMed Central Google Scholar
DeKoter, R. P. & Singh, H. Graded levels of PU.1 specify B lymphocyte and macrophage cell fates. Science288, 1439–1441 (2000). ArticleCASPubMed Google Scholar
Lebestky, T., Chang, T., Hartenstein, V. & Banerjee, U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science288, 146– 149 (2000). ArticleCASPubMed Google Scholar
Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev.6, 1589–1607 ( 1992). ArticleCASPubMed Google Scholar
Urbanek, P., Wang, Z.-Q., Fetka, I., Wagner, E. R. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell79, 901–912 ( 1994). ArticleCASPubMed Google Scholar
Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 . Nature401, 556–562 (1999).In this paper the phenotype ofPax5−/−haematopoietic cells is examined. Evidence is provided to show that Pax5 is required to suppress other lineages and direct B-lymphoid differentiation. ArticleCASPubMed Google Scholar
Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature401, 603– 606 (1999). ArticleCASPubMed Google Scholar
Busslinger, M., Nutt, S. L. & Rolink, A. G. Lineage commitment in lymphopoiesis. Curr. Opin. Immunol.12, 151–158 (2000). ArticleCASPubMed Google Scholar
Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells . Cell89, 587–596 (1997). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment . Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Pevny, L. et al. Erythroid differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature349, 257–260 (1991). In this ‘classic’ paper, the requirement for a lineage-restricted haematopoietic transcription factor for differentiation is documented through analysis of chimaeras generated with gene-targeted embryonic stem cells. ArticleCASPubMed Google Scholar
Shivadasani, R. A., Fujiwara, Y., McDevitt, M. A. & Orkin, S. H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J.16, 3965–3973 ( 1997). Article Google Scholar
Fujiwara, Y., Browne, C. P., Cunniff, K., Goff, S. C. & Orkin, S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl Acad. Sci. USA93, 12355– 12358 (1996). ArticleCASPubMedPubMed Central Google Scholar
McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J.15, 5647– 5658 (1996). ArticleCASPubMedPubMed Central Google Scholar
Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science265, 1573– 1577 (1994). ArticleCASPubMed Google Scholar
Moreau-Gachelin, F. et al. The PU.1 transcription factor is the product of the putative oncogene Spi-1. Cell61, 1166 (1990). Article Google Scholar
Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direction interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev.13, 1398–1411 (1999). This paper presents strong evidence to illustrate that direct antagonism between these transcription factors is critical for the development of different lineages. This work is complemented and extended by Refs54–56. ArticleCASPubMedPubMed Central Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA96, 8705–8710 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood95, 2543– 2551 (2000). ArticleCASPubMed Google Scholar
Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA-binding. Blood (in the press).
Querfurth, E. et al. Antagonism between C/EBPβ and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev. (in the press).
Tsang, A. C. et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation . Cell90, 109–119 (1997).This paper was the first to describe a specific cofactor that modulates the function of GATA-1 in transcription. ArticleCASPubMed Google Scholar
Tsang, A. P., Fujiwara, Y., Hom, D. B. & Orkin, S. H. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev.12, 1176– 1188 (1998). ArticleCASPubMedPubMed Central Google Scholar
Deconinck, A. E. et al. FOG acts as a repressor of red blood cell development in Xenopus. Development127, 2031– 2040 (2000). ArticleCASPubMed Google Scholar
Fox, A. H. et al. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J.18, 2812–2822 (1999). ArticleCASPubMedPubMed Central Google Scholar
Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell79, 143– 156 (1994). ArticleCASPubMed Google Scholar
Georgopoulos, K., Moore, D. D. & Defler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science258, 808–812 (1992). ArticleCASPubMed Google Scholar
Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity5, 537–549 ( 1996). ArticleCASPubMed Google Scholar
Koipally, J. & Georgopoulos, K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity . J. Biol. Chem.275, 19594– 19602 (2000). ArticleCASPubMed Google Scholar
Eberhard, D., Jimenez, G., Heavy, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J.19, 2292– 2303 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sieweke, M. H., Tekotte, H., Frampton, J. & Graf, T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation . Cell84, 49–60 (1996). Article Google Scholar
Jimenez, G., Griffiths, S. D., Ford, A. M., Greaves, M. F. & Enver, T. Activation of the β-globin locus control region precedes commitment to the erythroid lineage. Proc. Natl Acad. Sci. USA89, 10618–10622 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774– 785 (1997).Single-cell RT–PCR was used in this study to show that multipotential progenitor cells contain transcripts usually associated with different lineages. ArticleCASPubMed Google Scholar
Tsai, S.-F., Strauss, E. & Orkin, S. H. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev.5, 919– 931 (1991). ArticleCASPubMed Google Scholar
Chen, H. et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene19, 1549–1560 ( 1995). Google Scholar
Nutt, S. L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nature Genet.21, 390– 395 (1999). ArticleCASPubMed Google Scholar
Nutt, S. L. & Busslinger, M. Monoallelic expression of Pax5: a paradigm for the haploinsufficiency of mammalian Pax genes? Biol. Chem.380, 601–611 (1999). ArticleCASPubMed Google Scholar
Downing, J. R. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br. J. Haematol.106, 296–308 (1999). ArticleCASPubMed Google Scholar
Jackson, K. A., Mi, T. & Goodell, M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl Acad. Sci. USA96, 14482–14486 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature401, 390– 394 (1999).These two papers show that muscle progenitor cells seem to contribute to haematopoiesis and, conversely, that haematopoietic progenitors give rise to muscle in transplanted mice. In Ref.77, it is shown thatin vitroculture of muscle progenitors seems to augment haematopoietic reconstitution. CASPubMed Google Scholar
Wood, H. B., May, G., Healy, L., Enver, T. & Morriss-Kay, G. M. CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood90, 2300– 2311 (1997). ArticleCASPubMed Google Scholar
Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science283, 534–537 ( 1999). ArticleCASPubMed Google Scholar
Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science288, 1660–1663 ( 2000).These two papers indicate that adult neural stem cells have diverse developmental potentials when introduced into mice, chicken embryos, or examinedin vitroin embryoid bodies. ArticleCASPubMed Google Scholar
Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science284, 1168–1170 ( 1999). ArticleCASPubMed Google Scholar
Theise, N. D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology31, 235–240 (2000). ArticleCASPubMed Google Scholar
Blau, H. M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell Biol.112, 781– 783 (1991). ArticleCASPubMed Google Scholar