Isotopic evidence for microbial sulphate reduction in the early Archaean era (original) (raw)
- Letter
- Published: 01 March 2001
Nature volume 410, pages 77–81 (2001)Cite this article
- 4430 Accesses
- 481 Citations
- 3 Altmetric
- Metrics details
Abstract
Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient1,2, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate3. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10–40‰ compared to the sulphate, with fractionations decreasing to near 0‰ at lower concentrations2,4,5,6. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction7. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic2,8,9,10. Here we report microscopic sulphides in ∼3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1‰, about a mean of 11.6‰, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway—allowing time calibration of a deep node on the tree of life.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998).
CAS PubMed PubMed Central Google Scholar - Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).
Article ADS CAS Google Scholar - Postgate, J. R. The Sulphate-Reducing Bacteria 2nd edn (Cambridge Univ. Press, Cambridge, 1984).
Google Scholar - Harrison, A. G. & Thode, H. G. Mechanisms of the bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc. 53, 84–92 (1958).
Article Google Scholar - Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 195–212 (1964).
Article CAS Google Scholar - Knoll, A. H. & Canfield, D. E. Isotopic inferences on early ecosystems. Paleontol. Soc. Pap. 4, 212–243 (1998).
Article Google Scholar - Goodwin, A. M., Monster, J. & Thode, H. G. Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Econ. Geol. 71, 870–891 (1976).
Article CAS Google Scholar - Cameron, E. M. Sulphate and sulphate reduction in early Precambrian. Nature 296, 145–148 (1982).
Article ADS CAS Google Scholar - Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–134 (Cambridge Univ. Press, Cambridge, 1992).
Google Scholar - Ohmoto, H., Kakegawa, T. & Lowe, D. R. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262, 555–557 (1993).
Article ADS CAS Google Scholar - Buick, R. & Dunlop, J. S. R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990).
Article ADS Google Scholar - Buick, R. et al. Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).
Article ADS CAS Google Scholar - Buick, R. & Barnes, K. R. Cherts in the Warrawoona Group: early Archaean silicified sediments deposited in shallow water environments. Univ. West. Aust. Geol. Dept Univ. Extension Spec. Publ. 9, 37–53 (1984).
Google Scholar - Lambert, I. B., Donnelly, T. H., Dunlop, J. S. R. & Groves, D. I. Stable isotope compositions of early Archaean sulphate deposits of probable evaporite and volcanogenic origins. Nature 276, 808–810 (1978).
Article ADS CAS Google Scholar - Groves, D. I., Dunlop, J. S. R. & Buick, R. An early habitat of life. Sci. Am. 245, 64–73 (1981).
Article Google Scholar - Nijman, W., de Bruijne, K. C. H. & Valkering, M. E. Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambr. Res. 88, 25–52 (1999).
Article ADS Google Scholar - Rankin, A. H. & Shepherd, T. J. H2S-bearing fluid inclusions in baryte from the North Pole deposit, Western Australia. Mineral. Mag. 42, 408–410 (1978).
Article CAS Google Scholar - Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 517–611 (Wiley, New York, 1997).
Google Scholar - Cameron, E. M. & Hattori, K. Archean gold mineralization and oxidized hydrothermal fluids. Econ. Geol. 82, 1177–1191 (1987).
Article CAS Google Scholar - Hardie, L. A. The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–200 (1967).
CAS Google Scholar - Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).
Article ADS CAS Google Scholar - Schidlowski, M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318 (1988).
Article ADS CAS Google Scholar - Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).
Article ADS CAS Google Scholar - Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from the Warrawoona Group, Australia. Science 237, 70–73 (1987).
Article ADS CAS Google Scholar - Widdel, F. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 496–585 (Wiley, New York, 1988).
Google Scholar - Stetter, K. O. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 1–10 (Wiley, New York, 1996).
Google Scholar - Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
Article CAS Google Scholar - Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
Article ADS CAS Google Scholar - Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).
Article ADS CAS Google Scholar - Knoll, A. H. A new molecular window on early life. Science 285, 1025–1026 (1999).
Article CAS Google Scholar
Acknowledgements
We thank J. S. R. Dunlop for suggesting that we should examine the isotopic systematics of microscopic sulphur species in the North Pole barite; K.-U. Hinrichs, K. Londry, R. Summons, B. Thamdrup and K. Habicht for discussions; I. O'Brien, O. Thomas and L. Salling for technical assistance; and D. Des Marais for comments and suggestions. This work was supported by the Danish Grundforkningsfond (Basic Research Foundation) and by the Australian Research Council (R.B.).
Author information
Authors and Affiliations
- Danish Center for Earth System Science (DCESS) and Institute of Biology, Odense University, SDU, Campusvej 55, Odense M, 5230, Denmark
Yanan Shen & Donald E. Canfield - School of Geosciences FO5, University of Sydney, Sydney, 2006, NSW, Australia
Roger Buick
Authors
- Yanan Shen
You can also search for this author inPubMed Google Scholar - Roger Buick
You can also search for this author inPubMed Google Scholar - Donald E. Canfield
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toYanan Shen.
Supplementary information
Rights and permissions
About this article
Cite this article
Shen, Y., Buick, R. & Canfield, D. Isotopic evidence for microbial sulphate reduction in the early Archaean era.Nature 410, 77–81 (2001). https://doi.org/10.1038/35065071
- Received: 18 May 2000
- Accepted: 24 November 2000
- Issue Date: 01 March 2001
- DOI: https://doi.org/10.1038/35065071