Blanshard, J. M. V. & Lillford, P. (eds) The Glassy State in Foods (Nottingham Univ. Press, Nottingham, 1993). Google Scholar
Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol.60, 73–103 (1998). ArticleCASPubMed Google Scholar
Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Lewis, C. P. Theory of supercooled liquids and glasses: energy landscape and statistical geometry perspectives. Adv. Chem. Eng. (in the press).
Jenniskens, P. & Blake, D. F. Structural transitions in amorphous water ice and astrophysical implications. Science265, 753–756 (1994). ArticleADSCASPubMed Google Scholar
Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys.88, 3113–3157 (2000). ArticleADSCAS Google Scholar
Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton Univ. Press, Princeton, 1996). Google Scholar
Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys.10, 473–488 (1969). ArticleADSCAS Google Scholar
Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids102, 205–221 (1988). ArticleADSCAS Google Scholar
Moynihan, C. T. et al. in The Glass Transition and the Nature of the Glassy State (eds Goldstein, M. & Simha, R.) Ann. NY Acad. Sci.279, 15–36 (1976). Google Scholar
Brüning, R. & Samwer, K. Glass transition on long time scales. Phys. Rev. B46, 318–322 (1992). Article Google Scholar
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem.100, 13200–13212 (1996). ArticleCAS Google Scholar
Vogel, H. Das temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Zeit.22, 645–646 (1921). CAS Google Scholar
Tammann, G. & Hesse, W. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem.156, 245–257 (1926). ArticleCAS Google Scholar
Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc.8, 339 (1925). ArticleCAS Google Scholar
Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem.76, 2317–2325 (1972). ArticleCAS Google Scholar
Angell, C. A. in Relaxations in Complex Systems (eds Ngai, K. & Wright, G. B.) 1 (Natl Technol. Inform. Ser., US Dept. of Commerce, Springfield, VA, 1985). Google Scholar
Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids131–133, 13–31 (1991). ArticleADS Google Scholar
Green, J. L., Ito, K., Xu, K. & Angell, C. A. Fragility in liquids and polymers: new, simple quantifications and interpretations. J. Phys. Chem. B103, 3991–3996 (1999). ArticleCAS Google Scholar
Novikov, V. N., Rössler, E., Malinovsky, V. K. & Surovstev, N. V. Strong and fragile liquids in percolation approach to the glass transition. Europhys. Lett.35, 289–294 (1996). ArticleADSCAS Google Scholar
Fujimori, H. & Oguni, M. Correlation index (Tgα−Tgβ)/Tgα and activation energy ratio Δɛaα/Δɛaβ as parameters characterizing the structure of liquid and glass. Solid State Commun.94, 157–162 (1995). ArticleADSCAS Google Scholar
Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids. Phys. Rev. E53, 751–758 (1996). ArticleADSCAS Google Scholar
Cummins, H. Z. Comment on “Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids”. Phys. Rev. E54, 5870–5872 (1996). ArticleADSCAS Google Scholar
Kohlrausch, R. Theorie des elektrischen rückstandes in der leidener flasche. Ann. Phys. Chem. (Leipzig)91, 179–214 (1874). Google Scholar
Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc.66, 80–85 (1970). ArticleCAS Google Scholar
Richert, R. & Blumen, A. in Disorder Effects on Relaxational Processes (eds Richert, R. & Blumen, A.) 1–7 (Springer, Berlin, 1994). Book Google Scholar
Cicerone, M. T. & Ediger, M. D. Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys.103, 5684–5692 (1995). ArticleADSCAS Google Scholar
Cicerone, M. T. & Ediger, M. D. Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics? J. Chem. Phys.104, 7210–7218 (1996). ArticleADSCAS Google Scholar
Mel'cuk, A. I., Ramos, R. A., Gould, H., Klein, W. & Mountain, R. D. Long-lived structures in fragile glass-forming liquids. Phys. Rev. Lett.75, 2522–2525 (1995). ArticleADSCASPubMed Google Scholar
Hurley, M. M. & Harrowell, P. Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys.105, 10521–10526 (1996). ArticleADSCAS Google Scholar
Perera, D. N. & Harrowell, P. Measuring diffusion in supercooled liquids: the effect of kinetic inhomogeneities. J. Chem. Phys.104, 2369–2375 (1996). ArticleADSCAS Google Scholar
Perera, D. N. & Harrowell, P. Consequence of kinetic inhomogeneities in glasses. Phys. Rev. E54, 1652–1662 (1996). ArticleADSCAS Google Scholar
Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E60, 3107–3119 (1999). ArticleADSCAS Google Scholar
Böhmer, R., Hinze, G., Diezemann, G., Geil, B. & Sillescu, H. Dynamic heterogeneity on supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett.36, 55–60 (1996). ArticleADS Google Scholar
Wang, C.-Y. & Ediger, M. D. How long do regions of different dynamics persist in supercooled o-terphenyl? J. Phys. Chem. B103, 4177–4184 (1999). ArticleCAS Google Scholar
Vidal Russell, E. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature408, 695–698 (2000). ArticleADSCASPubMed Google Scholar
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem.51, 99–128 (2000). ArticleADSCASPubMed Google Scholar
Fujara, F., Geil, B., Sillescu, H. H. & Fleischer, G. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B Cond. Matt.88, 195–204 (1992). ArticleADSCAS Google Scholar
Johari, G. P. Intrinsic mobility of molecular glasses. J. Chem. Phys.58, 1766–1770 (1973). ArticleADSCAS Google Scholar
Johari, G. P. & Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys.53, 2372–2388 (1970). ArticleADSCAS Google Scholar
Rössler, E., Warschewske, U., Eiermann, P., Sokolov, A. P. & Quitmann, D. Indications for a change of transport mechanism in supercooled liquids and the dynamics close and below Tg . J. Non-Cryst. Solids172–174, 113–125 (1994). ArticleADS Google Scholar
Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science267, 1935–1939 (1995). ArticleADSCASPubMed Google Scholar
Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev.43, 219–256 (1948). ArticleCAS Google Scholar
Simon, F. Über den zustand der unterkühlten flüssigkeiten und glässer. Z. Anorg. Allg. Chem.203, 219–227 (1931). ArticleCAS Google Scholar
Wolynes, P. G. Aperiodic crystals: biology, chemistry and physics in a fugue with stretto. AIP Conf. Proc.180, 39–65 (1988). ArticleADSCAS Google Scholar
Wolynes, P. G. Entropy crises in glasses and random heteropolymers. J. Res. Natl Inst. Standards Technol.102, 187–194 (1997). ArticleCAS Google Scholar
Angell, C. A. Landscapes with megabasins: polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases. Physica D107, 122–142 (1997). ArticleADSCAS Google Scholar
Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys.28, 373–383 (1958). ArticleADSCAS Google Scholar
Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys.43, 139–146 (1965). ArticleADSCAS Google Scholar
Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys.108, 9016–9026 (1998). ArticleADSCAS Google Scholar
Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of the relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc.77, 3701–3707 (1955). ArticleCAS Google Scholar
Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature398, 492–495 (1999). ArticleADSCAS Google Scholar
Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys.51, 3728–3739 (1969). ArticleADSCAS Google Scholar
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science254, 1598–1603 (1991). ArticleADSCASPubMed Google Scholar
Nienhaus, G. U., Müller, J. D., McMahon, B. H. & Frauenfelder, H. Exploring the conformational energy landscape of proteins. Physica D107, 297–311 (1997). ArticleADSCAS Google Scholar
Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Free energy landscape for protein folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys.101, 6052–6062 (1994). ArticleADSCAS Google Scholar
Saven, J. G., Wang, J. & Wolynes, P. G. Kinetics of protein folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys.101, 11037–11043 (1994). ArticleADSCAS Google Scholar
Wang, J., Onuchic, J. & Wolynes, P. Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys. Rev. Lett.76, 4861–4864 (1996). ArticleADSCASPubMed Google Scholar
Plotkin, S. S., Wang, J. & Wolynes, P. G. Correlated energy landscape model for finite, random heteropolymers. Phys. Rev. E53, 6271–6296 (1996). ArticleADSCAS Google Scholar
Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys.106, 1495–1517 (1997). ArticleADSCAS Google Scholar
Dill, K. A. & Chan, H. S. From Levinthal to pathways and funnels. Nature Struct. Biol.4, 10–19 (1997). ArticleCASPubMed Google Scholar
Klepeis, J. L., Floudas, C. A., Morikis, D. & Lambris, J. D. Predicting peptide structure using NMR data and deterministic global optimization. J. Comp. Chem.20, 1354–1370 (1999). ArticleCAS Google Scholar
Lacks, D. J. Localized mechanical instabilities and structural transformations in silica glass under high pressure. Phys. Rev. Lett.80, 5385–5388 (1998). ArticleADSCAS Google Scholar
Malandro, D. L. & Lacks, D. J. Volume dependence of potential energy landscapes in glasses. J. Chem. Phys.107, 5804–5810 (1997). ArticleADSCAS Google Scholar
Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys.110, 4593–4601 (1999). ArticleADSCAS Google Scholar
Malandro, D. L. & Lacks, D. J. Molecular-level instabilities and enhanced self-diffusion in flowing liquids. Phys. Rev. Lett.81, 5576–5579 (1998). ArticleADSCAS Google Scholar
Schulz, M. Energy landscape, minimum points, and non-Arrhenius behavior of supercooled liquids. Phys. Rev. B57, 11319–11333 (1998). ArticleADSCAS Google Scholar
Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature393, 554–557 (1998). ArticleADSCAS Google Scholar
Keyes, T. Dependence of supercooled liquid dynamics on elevation in the energy landscape. Phys. Rev. E59, 3207–3211 (1999). ArticleADSCAS Google Scholar
Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Roberts, C. J. The equation of state of an energy landscape. J. Phys. Chem. B103, 7390–7397 (1999). ArticleCAS Google Scholar
Jonsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard-Jones crystal and glass. Phys. Rev. Lett.60, 2295–2298 (1988). ArticleADSCASPubMed Google Scholar
Angelani, L., Di Leonardo, R., Ruocco, G., Scala, A. & Sciortino, F. Saddles in the energy landscape probed by supercooled liquids. Phys. Rev. Lett.85, 5356–5359 (2000). ArticleADSCASPubMed Google Scholar
Stillinger, F. H., Debenedetti, P. G. & Sastry, S. Resolving vibrational and structural contributions to isothermal compressibility. J. Chem. Phys.109, 3983–3988 (1998). ArticleADSCAS Google Scholar
Stillinger, F. H. & Debenedetti, P. G. Distinguishing vibrational and structural equilibration contributions to thermal expansion. J. Phys. Chem. B103, 4052–4059 (1999). ArticleCAS Google Scholar
Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett.83, 3214–3217 (1999). ArticleADSCAS Google Scholar
Büchner, S. & Heuer, A. Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. Phys. Rev. E60, 6507–6518 (1999). ArticleADS Google Scholar
Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity in supercooled water. Nature406, 166–169 (2000). ArticleADSCASPubMed Google Scholar
Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300 Mpa. Phys. Rev. Lett.59, 1128–1131 (1987). ArticleADSCASPubMed Google Scholar
Mackenzie, J. D. Viscosity-temperature relationship for network liquids. J. Am. Ceram. Soc.44, 598–601 (1961). ArticleCAS Google Scholar
Greet, R. J. & Turnbull, D. Glass transition in o-terphenyl. J. Chem. Phys.46, 1243–1251 (1967). ArticleADSCAS Google Scholar
Stillinger, F. H. & Hodgdon, J. A. Translation-rotation paradox for diffusion in fragile glass-forming liquids. Phys. Rev. E50, 2064–2068 (1994). ArticleADSCAS Google Scholar
Tarjus, G. & Kivelson, D. Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys.103, 3071–3073 (1995). ArticleADSCAS Google Scholar
Liu, C. Z.-W. & Openheim, I. Enhanced diffusion upon approaching the kinetic glass transition. Phys. Rev. E53, 799–802 (1996). ArticleADSCAS Google Scholar
Geszti, T. Pre-vitrification by viscosity feedback. J. Phys. C16, 5805–5814 (1983). ArticleADSCAS Google Scholar
Bengtzelius, U., Götze, W. & Sjölander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C17, 5915–5934 (1984). ArticleADSCAS Google Scholar
Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys.55, 241–376 (1992). ArticleADS Google Scholar
Götze, W. & Sjögren, L. The mode coupling theory of structural relaxations. Transp. Theory Stat. Phys.24, 801–853 (1995). ArticleADSMATH Google Scholar
Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Cond. Matt.11, A1–A45 (1999). ArticleADS Google Scholar
Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Cond. Matt.11, R85–R115 (1999).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E51, 4626–4641 (1995). ArticleADSCAS Google Scholar
Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. A thermodynamic theory of supercooled liquids. Physica A219, 27–38 (1995). ArticleADSCAS Google Scholar
Kivelson, D. & Tarjus, G. SuperArrhenius character of supercooled glass-forming liquids. J. Non-Cryst. Solids235–237, 86–100 (1998). ArticleADS Google Scholar
Kivelson, D. & Tarjus, G. The Kauzmann paradox interpreted via the theory of frustration-limited domains. J. Chem. Phys.109, 5481–5486 (1998). ArticleADSCAS Google Scholar
Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature409, 164–167 (2001). ArticleADSCASPubMed Google Scholar
Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B103, 4060–4065 (1999). ArticleCAS Google Scholar
Keyes, T. Instantaneous normal mode approach to liquid state dynamics. J. Phys. Chem. A101, 2921–2930 (1997). ArticleCAS Google Scholar
Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B36, 8552–8564 (1987). ArticleADSCAS Google Scholar
Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A40, 1045–1054 (1989). ArticleADSCAS Google Scholar
Mézard, M. & Parisi, G. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett.82, 747–750 (1999). ArticleADS Google Scholar
Berendsen, H. J., Grigera, J. R. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem.91, 6269–6271 (1987). ArticleCAS Google Scholar
Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys.88, 7818–7825 (1988). ArticleADSMathSciNetCAS Google Scholar
Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature405, 550–551 (2000). ArticleADSCASPubMed Google Scholar
Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, Oxford, 1967). Google Scholar
Rastogi, S., Höhne, G. W. H. & Keller, A. Unusual pressure-induced phase behavior in crystalline Poly(4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules32, 8897–8909 (1999). ArticleADSCAS Google Scholar
Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E59, 48–51 (1999). ArticleADSCAS Google Scholar
Stillinger, F. H. Enumeration of isobaric inherent structures for the fragile glass former o-terphenyl. J. Phys. Chem. B102, 2807–2810 (1998). ArticleCAS Google Scholar