p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation (original) (raw)

References

  1. Umemori, H. et al. Specific expressions of Fyn and Lyn, lymphocyte antigen receptor-associated tyrosine kinases, in the central nervous system. Brain Res. Mol. Brain Res. 16, 303–310 (1992).
    Article CAS Google Scholar
  2. Cotton, P. C. & Brugge, J. S. Neural tissues express high levels of the cellular src gene product pp60c-src. Mol. Cell. Biol. 3, 1157–1162 (1983).
    Article CAS Google Scholar
  3. Grant, S. G. N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).
    Article CAS Google Scholar
  4. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).
    Article CAS Google Scholar
  5. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).
    Article CAS Google Scholar
  6. Stein, P. L., Vogel, H. & Soriano, P. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8, 1999–2007 (1994).
    Article CAS Google Scholar
  7. Bixby, J. L. & Jhabvala, P. Tyrosine phosphorylation in early embryonic growth cones. J. Neurosci. 13, 3421–3432 (1993).
    Article CAS Google Scholar
  8. Maness, P. F., Aubry, M., Shores, C. G., Frame, L. & Pfenninger, K. H. c-src gene product in developing rat brain is enriched in nerve growth cone membranes. Proc. Natl Acad. Sci. USA 85, 5001–5005 (1988).
    Article CAS Google Scholar
  9. Morse, W. R., Whitesides, J. G., 3rd, LaMantia, A. S. & Maness, P. F. p59fyn and pp60c-src modulate axonal guidance in the developing mouse olfactory pathway. J. Neurobiol. 36, 53–63 (1998).
    Article CAS Google Scholar
  10. Beggs, H. E., Soriano, P. & Maness, P. F. NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biol. 127, 825–833 (1994).
    Article CAS Google Scholar
  11. Ignelzi, M. A., Jr., Miller, D. R., Soriano, P. & Maness, P. F. - Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12, 873–884 (1994).
    Article CAS Google Scholar
  12. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).
    Google Scholar
  13. Moran, M. F., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21 ras GTPase-activating protein. Mol. Cell. Biol. 11, 1804–1812 (1991).
    Article CAS Google Scholar
  14. Settleman, J., Albright, C. F., Foster, L. C. & Weinberg, R. A. Association between GTPase activators for rho and ras families. Nature 359, 153–154 (1992).
    Article CAS Google Scholar
  15. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343, 377–381 (1990).
    Article CAS Google Scholar
  16. Hu, K. Q. & Settleman, J. - Tandem SH2 binding sites mediate the RasGAP–RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473–483 (1997).
    Article CAS Google Scholar
  17. Roof, R. W. et al. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP–p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c- Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052–7063 (1998).
    Article CAS Google Scholar
  18. Foster, R., Hu, K.-Q., Shaywitz, D. A. & Settleman, J. p190 RhoGAP, the major RasGAP-associated protein, binds GTP directly. Mol. Cell. Biol. 14, 7173–7181 (1994).
    Article CAS Google Scholar
  19. Settleman, J., Narasimhan, V., Foster, L. C. & Weinberg, R. A. Molecular cloning of cDNAs encoding the GAP-associated protein p190; implications for a signaling pathway from ras to the nucleus. Cell 63, 539–549 (1992).
    Article Google Scholar
  20. Ridley, A. J. et al. rho GTPase activating proteins p190, bcr and RhoGAP show distinct specificities in vitro and in vivo. EMBO J. 12, 5151–5160 (1993).
    Article CAS Google Scholar
  21. Ridley, A. J. Rho: theme and variations. Curr. Biol. 6, 1256–1264 (1996).
    Article CAS Google Scholar
  22. Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).
    Article CAS Google Scholar
  23. Burbelo, P. D. et al. p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J. Biol. Chem. 270, 30919–30926 (1995).
    Article CAS Google Scholar
  24. McGlade, J. et al. The amino-terminal region of GAP regulates cytoskeletal structure and cell ashesion. EMBO J. 12, 3073–3081 (1993).
    Article CAS Google Scholar
  25. Nakahara, H. et al. Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J. Biol. Chem. 273, 9–12 (1998).
    Article CAS Google Scholar
  26. Sharma, S. V. Rapid recruitment of p120RasGAP and its associated protein, p190RhoGAP, to the cytoskeleton during integrin mediated cell-substrate interaction. Oncogene 17, 271–281 (1998).
    Article CAS Google Scholar
  27. Brouns, M. R. et al. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127, 4891–4903 (2000).
    CAS Google Scholar
  28. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).
    Article CAS Google Scholar
  29. Del Río, J. A., Martinez, A., Auladell, C. & Soriano, E. Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb. Cortex 10, 784–801 (2000).
    Article Google Scholar
  30. Fukuda, T. et al. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. J. Comp. Neurol. 382, 141–152 (1997).
    Article CAS Google Scholar
  31. Dahme, M. et al. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nature Genet. 17, 346–349 (1997).
    Article CAS Google Scholar
  32. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).
    Article CAS Google Scholar
  33. Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).
    Article CAS Google Scholar
  34. Shea, T. B., Fischer, I. & Sapirstein, V. S. Effect of retinoic acid on growth and morphological differentiation of mouse NB2a neuroblastoma cells in culture. Brain Res. 353, 307–314 (1985).
    Article CAS Google Scholar
  35. Duménil, G., Sansonetti, P. & Tran Van Nhieu, G. Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J. Cell Sci. 113, 71–80 (2000).
    Google Scholar
  36. Fincham, V. J., Chudleigh, A. & Frame, M. C. Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J. Cell Sci. 112, 947–956 (1999).
    CAS Google Scholar
  37. Leblanc, V., Tocque, B. & Delumeau, I. Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain. Mol. Cell. Biol. 18, 5567–5578 (1998).
    Article CAS Google Scholar
  38. Henkemeyer, M. et al. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695–701 (1995).
    Article CAS Google Scholar
  39. Lipfert, L. et al. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol. 119, 905–912 (1992).
    Article CAS Google Scholar
  40. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).
    Article CAS Google Scholar
  41. Fifkova, E. & Morales, M. Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int. Rev. Cytol. 139, 267–307 (1992).
    Article CAS Google Scholar
  42. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).
    Article CAS Google Scholar
  43. Beggs, H. E., Baragona, S. C., Hemperly, J. J. & Maness, P. F. NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC- related tyrosine kinase p59(fyn). J. Biol. Chem. 272, 8310–8319 (1997).
    Article CAS Google Scholar
  44. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594 (1994).
    Article CAS Google Scholar
  45. Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 15, 6035–6049 (1996).
    Article CAS Google Scholar
  46. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).
    Article CAS Google Scholar
  47. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).
    Article CAS Google Scholar
  48. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).
    Article CAS Google Scholar
  49. Goslin, K., Asmussen, H. & Banker, G. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 339–370 (MIT Press, Cambridge, MA, 1998).
    Google Scholar
  50. Mark, M. et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).
    CAS Google Scholar

Download references