Research and treatment approaches to depression (original) (raw)
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, Washington, DC, 1994).
Zis, A. P. & Goodwin, F. K. Major affective disorder as a recurrent illness: a critical review. Arch. Gen. Psychiatry36, 835–839 (1979). CASPubMed Google Scholar
Sundstrom, I. M., Bixo, M., Bjorn, I. & Astrom, M. Prevalence of psychiatric disorders in gynecologic outpatients. Am. J. Obstet. Gynecol.184, 8–13 (2001). CASPubMed Google Scholar
Lyness, J. M., Caine, E. D., King, D. A., Cox, C. & Yoediono, Z. Psychiatric disorders in older primary care patients. J. Gen. Intern. Med.14, 249–254 (1999). CASPubMedPubMed Central Google Scholar
Lindeman, S. et al. The 12-month prevalence and risk factors for major depressive episode in Finland: representative sample of 5993 adults. Acta Psychiatr. Scand.102, 178–184 (2000). CASPubMed Google Scholar
Dubini, A., Mannheimer, R. & Pancheri, P. Depression in the community: results of the first Italian survey. Int. Clin. Psychopharmacol.16, 49–53 (2001). CASPubMed Google Scholar
Fichter, M. M. et al. Prevalence of mental illness in Germany and the United States. Comparison of the Upper Bavarian Study and the Epidemiologic Catchment Area Program. J. Nerv. Ment. Dis.184, 598– 606 (1996). CASPubMed Google Scholar
Tomoda, A., Mori, K., Kimura, M., Takahashi, T. & Kitamura, T. One-year prevalence and incidence of depression among first-year university students in Japan: a preliminary study. Psychiatry Clin. Neurosci.54, 583– 588 (2000). CASPubMed Google Scholar
Weissman, M. M. et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA276, 293– 299 (1996).A detailed assessment of lifetime and annual rate depression prevalence in ten countries: Canada, France, Germany, Italy, Korea, Lebanon, New Zealand, Puerto Rico, Taiwan and the United States. CASPubMed Google Scholar
Blazer, D. G., Kessler, R. C., McGonagle, K. A. & Swartz, M.S. The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am. J. Psychiatry151, 979–986 (1994). CASPubMed Google Scholar
Greenberg, P. E., Stiglin, L. E., Finkelstein, S. N. & Berndt, E. R. The economic burden of depression in 1990. J. Clin. Psychiatry54, 405–418 ( 1993).Estimates that the total cost of depression in the United States was $43.7 billion per year in 1990. CASPubMed Google Scholar
Murray, C. J. L. & Lopez, A. D. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk factors in 1990 and Projected to 2020 (Harvard Univ. Press, Cambridge, Massachusetts, 1996). Google Scholar
Murphy, S. L. Deaths: Final data for 1998. Natl Vital Stat Rep48 , 1–105 (2000). CASPubMed Google Scholar
Olsson, G. I. & von Knorring, A. L. Adolescent depression: prevalence in Swedish high-school students. Acta Psychiatr. Scand.99, 324–331 (1999). CASPubMed Google Scholar
Klerman, G. L. in The Harvard Guide to Modern Psychiatry (ed. Nicholi, J.) 253–281 (Belknap/Harvard Univ. Press, Cambridge, 1978). Google Scholar
Kerr, T. A., Schapira, K. & Roth, M. The relationship between premature death and affective disorders. Br. J. Psychiatry115, 1277– 1282 (1969). CASPubMed Google Scholar
Harris, E. C. & Barraclough, B. Excess mortality of mental disorder . Br. J. Psychiatry173, 11– 53 (1998). CASPubMed Google Scholar
Pratt, L. A. et al. Depression, psychotropic medication, and risk of myocardial infarction. Prospective data from the Baltimore ECA follow-up. Circulation94, 3123–3129 (1996). CASPubMed Google Scholar
Glassman, A. H. & Shapiro, P. A. Depression and the course of coronary artery disease. Am. J. Psychiatry155, 4–11 (1998). References18and19report that a history of depression increases the risk of myocardial infarction and the risk of death after infarction. CASPubMed Google Scholar
Michelson, D. et al. Bone mineral density in women with depression. N. Engl. J. Med.335, 1176–1181 (1996). CASPubMed Google Scholar
Agid, O. et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol. Psychiatry4, 163 –172 (1999).Shows that loss of a parent (mother more than father) before age nine is a significant predictor of depression later in life. CASPubMed Google Scholar
Nemeroff, C. B. The preeminent role of early untoward experience on vulnerability to major psychiatric disorders: the nature–nurture controversy revisited and soon to be resolved. Mol. Psychiatry4, 106–108 (1999). CASPubMed Google Scholar
Lewis, A. J. Melancholia: a clinical survey of depressive states. Natl Vital Stat Rep80, 277–378 ( 1934).A classic description of depression. Google Scholar
Garside, R. F., Kay, D. W., Wilson, I. C., Deaton, I. D. & Roth, M. Depressive syndromes and the classification of patients. Psychol. Med.1, 333– 338 (1971). CASPubMed Google Scholar
Gurland, B. Aims, organization, and initial studies of the Cross-National Project. Int. J. Aging Hum. Dev.7, 283–293 (1976). CASPubMed Google Scholar
Katz, M. M., Secunda, S. K., Hirschfeld, R. M. & Koslow, S. H. NIMH clinical research branch collaborative program on the psychobiology of depression. Arch. Gen. Psychiatry36, 765 –771 (1979). CASPubMed Google Scholar
World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnosis Guidelines (World Health Organization, Geneva, Switzerland, 1992 ).
Akiskal, H. S. Dysthymia and cyclothymia in psychiatric practice a century after Kraepelin . J. Affect. Disord.62, 17– 31 (2001). CASPubMed Google Scholar
Seligman, M. E. Learned helplessness as a model of depression. Comment and integration. J. Abnorm. Psychol.87, 165–179 (1978). CASPubMed Google Scholar
Seligman, M. E., Maier, S. F. & Geer, J. H. Alleviation of learned helplessness in the dog. J. Abnorm. Psychol.73, 256–262 (1968). CASPubMed Google Scholar
Seligman, M. E., Rosellini, R. A. & Kozak, M. J. Learned helplessness in the rat: time course, immunization, and reversibility. J. Comp. Physiol. Psychol.88, 542–547 (1975). CASPubMed Google Scholar
Kalin, N. H. & Carnes, M. Biological correlates of attachment bond disruption in humans and nonhuman primates. Prog. Neuropsychopharmacol. Biol. Psychiatry8, 459–469 (1984). CASPubMed Google Scholar
Plotsky, P. M. & Meaney, M. J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res.18, 195– 200 (1993). CASPubMed Google Scholar
Blanchard, D. C. & Blanchard, R. J. Behavioral correlates of chronic dominance-subordination relationships of male rats in a seminatural situation. Neurosci. Biobehav. Rev.14 , 455–462 (1990). References29–34examine animal syndromes that model aspects of the depression phenotype. CASPubMed Google Scholar
Weissman, M. M. et al. The efficacy of drugs and psychotherapy in the treatment of acute depressive episodes. Am. J. Psychiatry136, 555–558 (1979). CASPubMed Google Scholar
Kovacs, M., Rush, A. J., Beck, A. T. & Hollon, S. D. Depressed outpatients treated with cognitive therapy or pharmacotherapy. A one-year follow-up. Arch. Gen. Psychiatry38, 33–39 (1981).References35and36show that brief, structured psychotherapies are effective in the treatment of depression, and that they can be successfully combined with pharmacological treatments. CASPubMed Google Scholar
Nobel Foundation. Nobel Lectures — Physiology or Medicine, 1901–1970 (Elsevier, Amsterdam, 1970).
Bunney, W. E. & Davis, J. M. Noradrenaline in depressive reactions. A review. Arch. Gen. Psychiatry13, 483– 494 (1965). CASPubMed Google Scholar
Schildkraut, J. J., Gordon, E. K. & Durell, J. Catecholamine metabolism in affective disorders. I. Normetanephrine and VMA excretion in depressed patients treated with imipramine . J. Psychiatr. Res.3, 213– 228 (1965). CASPubMed Google Scholar
Coppen, A. The biochemistry of affective disorders. Br. J. Psychiatry113, 1237–1264 (1967). CASPubMed Google Scholar
Delgado, P. L. et al. Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch. Gen. Psychiatry47, 411 –418 (1990). CASPubMed Google Scholar
Miller, H. L. et al. Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch. Gen. Psychiatry53, 117–128 ( 1996). CASPubMed Google Scholar
Charney, D. S. Monoamine dysfunction and the pathophysiology and treatment of depression . J. Clin. Psychiatry59, 11– 14 (1998).References41–43show that noradrenaline- and serotonin-selective probes can potentially identify subsets of depressed patients who might respond differentially to selective noradrenaline or serotonin reuptake inhibitors. CASPubMed Google Scholar
Thase, M. E., Frank, E. & Kupfer, D. J. in Handbook of Depression: Treatment, Assessment, and Research (eds Beckham, E. E. & Leber, W. R.) 816–913 (Dorsey, Homewood, Illinois, 1985). Google Scholar
Veith, R. C. et al. Sympathetic nervous system activity in major depression. Basal and desipramine-induced alterations in plasma noradrenaline kinetics. Arch. Gen. Psychiatry51, 411–422 (1994). CASPubMed Google Scholar
Wong, M. L. et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc. Natl Acad. Sci. USA97, 325–330 ( 2000).References45and46report increased activity of sympathetic systems in depression. CASPubMed Google Scholar
Siever, L. J. & Davis, K. L. Overview: toward a dysregulation hypothesis of depression. Am. J. Psychiatry142, 1017–1031 (1985). CASPubMed Google Scholar
Johnstone, E. C. et al. Neurotic illness and its response to anxiolytic and antidepressant treatment. Psychol. Med.10, 321– 328 (1980). CASPubMed Google Scholar
Sachar, E. J., Hellman, L., Fukushima, D. K. & Gallagher, T. F. Cortisol production in depressive illness: a clinical and biochemical clarification . Arch. Gen. Psychiatry23, 289– 298 (1970). CASPubMed Google Scholar
Spiess, J., Rivier, J., Rivier, C. & Vale, W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc. Natl Acad. Sci. USA78, 6517–6521 (1981). CASPubMed Google Scholar
Gold, P. W. et al. Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. Am. J. Psychiatry141 , 619–627 (1984). CASPubMed Google Scholar
Nemeroff, C. B. et al. Elevated concentrations of CSF corticotropin-releasing-factor-like immunoreactivity in depressed patients. Science226 , 1342–1344 (1984). CASPubMed Google Scholar
Holsboer, F., Girken, A., Stalia, G. K. & Muller, O. A. Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. N. Engl. J. Med.311, 1127 (1984). CASPubMed Google Scholar
Gold, P. W. et al. Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing's disease. Pathophysiologic and diagnostic implications . N. Engl. J. Med.314, 1329– 1335 (1986). CASPubMed Google Scholar
Gold, P. W., Wong, M. L., Chrousos, G. P. & Licinio, J. Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol. Psychiatry1, 257–264 ( 1996). CASPubMed Google Scholar
Demitrack, M. A. et al. Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome. J. Clin. Endocrinol. Metab.73, 1224–1234 ( 1991). CASPubMed Google Scholar
Whybrow, P. C. & Prange, A. J. Jr., A hypothesis of thyroid-catecholamine-receptor interaction. Its relevance to affective illness. Arch. Gen. Psychiatry38, 106–113 (1981). CASPubMed Google Scholar
Gold, P. W. & Chrousos, G. P. The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences . Proc. Assoc. Am. Physicians111, 22– 34 (1999). CASPubMed Google Scholar
Whybrow, P. C., Coppen, A., Prange, A. J. Jr, Noguera, R. & Bailey, J. E. Thyroid function and the response to liothyronine in depression. Arch. Gen. Psychiatry26, 242–245 ( 1972). CASPubMed Google Scholar
Joffe, R. T. Refractory depression: treatment strategies, with particular reference to the thyroid axis. J. Psychiatry Neurosci.22, 327–331 (1997). CASPubMedPubMed Central Google Scholar
Kramer, M. S. et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science281, 1640–1645 (1998). CASPubMed Google Scholar
Zobel, A. W. et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated . J. Psychiatr. Res.34, 171– 181 (2000). CASPubMed Google Scholar
Kupfer, D. J., Shaw, D. H., Ulrich, R., Coble, P. A. & Spiker, D. G. Application of automated REM analysis in depression . Arch. Gen. Psychiatry39, 569– 573 (1982).Documents decreased latency to rapid-eye-movement–sleep onset in depressed patients. CASPubMed Google Scholar
Gerner, R. H., Post, R. M., Gillin, J. C. & Bunney, W. E. Jr Biological and behavioral effects of one night's sleep deprivation in depressed patients and normals. J. Psychiatr. Res.15, 21–40 (1979). CASPubMed Google Scholar
Lipkin, W. I., Travis, G. H., Carbone, K. M. & Wilson, M. C. Isolation and characterization of Borna disease agent cDNA clones. Proc. Natl. Acad. Sci. USA87, 4184– 4188 (1990). CASPubMed Google Scholar
Rott, R. et al. Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science228, 755–756 (1985). CASPubMed Google Scholar
Bode, L., Zimmermann, W., Ferszt, R., Steinbach, F. & Ludwig, H. Borna disease virus genome transcribed and expressed in psychiatric patients. Nature Med.1, 232–236 (1995). CASPubMed Google Scholar
Bode, L., Durrwald, R., Rantam, F. A., Ferszt, R. & Ludwig, H. First isolates of infectious human Borna disease virus from patients with mood disorders. Mol. Psychiatry1, 200–212 ( 1996). CASPubMed Google Scholar
De La Torre, J. C. et al. Detection of borna disease virus antigen and RNA in human autopsy brain samples from neuropsychiatric patients. Virology223, 272–282 ( 1996). CASPubMed Google Scholar
Kim, Y. K. et al. Failure to demonstrate Borna disease virus genome in peripheral blood mononuclear cells from psychiatric patients in Korea. J. Neurovirol.5, 196–199 ( 1999). CASPubMed Google Scholar
Tsuji, K., Toyomasu, K., Imamura, Y., Maeda, H. & Toyoda, T. No association of borna disease virus with psychiatric disorders among patients in northern Kyushu, Japan. J. Med. Virol.61, 336–340 (2000).References65–71report that Borna-disease virus (BDV) might infect a small, but significant portion of patients with depression; however, these findings have not been fully replicated. A causal relation between depression and BDV is at present unclear. CASPubMed Google Scholar
Solomon, G. F. Psychoneuroimmunology: interactions between central nervous system and immune system. J. Neurosci. Res.18, 1– 9 (1987). CASPubMed Google Scholar
Sternberg, E. M. Emotions and disease: from balance of humors to balance of molecules. Nature Med.3, 264–267 ( 1997). CASPubMed Google Scholar
Licinio, J., Wong, M. L. & Gold, P. W. Localization of interleukin-1 receptor antagonist mRNA in rat brain. Endocrinology129, 562– 564 (1991). CASPubMed Google Scholar
Rothwell, N. J. & Hopkins, S. J. Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci.18, 130–136 ( 1995). CASPubMed Google Scholar
Van Wagoner, N. J. & Benveniste, E. N. Interleukin-6 expression and regulation in astrocytes. J. Neuroimmunol.100, 124–139 (1999). CASPubMed Google Scholar
Rothwell, N. J. & Luheshi, G. N. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci.23, 618–625 ( 2000). CASPubMed Google Scholar
Connor, T. J. & Leonard, B. E. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci.62, 583–606 ( 1998). CASPubMed Google Scholar
Weiss, J. M., Sundar, S. K., Becker, K. J. & Cierpial, M. A. Behavioral and neural influences on cellular immune responses: effects of stress and interleukin-1. J. Clin. Psychiatry50, S43–S53 (1989). Google Scholar
Buckingham, J. C., Loxley, H. D., Taylor, A. D. & Flower, R. J. Cytokines, glucocorticoids and neuroendocrine function. Pharmacol. Res.30, 35–42 ( 1994). CASPubMed Google Scholar
Rivier, C. Effect of peripheral and central cytokines on the hypothalamic–pituitary–adrenal axis of the rat. Ann. NY Acad. Sci.697, 97–105 (1993). CASPubMed Google Scholar
Ramamoorthy, S. et al. Regulation of the human serotonin transporter by interleukin-1β . Biochem. Biophys. Res. Commun.216, 560 –567 (1995). CASPubMed Google Scholar
Maes, M. et al. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine9, 853–858 ( 1997). CASPubMed Google Scholar
Wong, M. L., Bongiorno, P. B., Rettori, V., McCann, S. M. & Licinio, J. Interleukin (IL) 1β, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications . Proc. Natl Acad. Sci. USA94, 227– 232 (1997).Shows that central and peripheral cytokine compartments are integrated but differentially regulated: central cytokines are counter-regulated to a smaller extent than peripherally secreted ones. CASPubMed Google Scholar
Licinio, J. & Wong, M. L. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol. Psychiatry4, 317–327 (1999). CASPubMed Google Scholar
Lander, E. S. & Schork, N. J. Genetic dissection of complex traits. Science265, 2037– 2048 (1994). CASPubMed Google Scholar
Fava, M. & Kendler, K. S. Major depressive disorder. Neuron28, 335–341 ( 2000). CASPubMed Google Scholar
Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry157, 1552–1562 (2000). Shows that depression is caused by both genetic and environmental factors. CAS Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. The lifetime history of major depression in women. Reliability of diagnosis and heritability. Arch. Gen. Psychiatry50, 863–870 ( 1993).Shows that major depression as assessed over one's lifetime might be a rather highly heritable disorder of moderate reliability rather than a moderately heritable disorder of high reliability. CASPubMed Google Scholar
Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science274, 1527–1531 (1996). Discovery of a polymorphism in the regulatory region of the serotonin transporter gene that reduces transcriptional efficiency and might be correlated with anxiety traits. CASPubMed Google Scholar
Smeraldi, E. et al. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3, 508–511 ( 1998).Proposes that genotyping the serotonin transporter regulatory region might be used as a tool to predict treatment response in depression. CASPubMed Google Scholar
Kim, D. K. et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport11, 215– 219 (2000). CASPubMed Google Scholar
Benedetti, F. et al. Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar depression. Am. J. Psychiatry156, 1450–1452 (1999). CASPubMed Google Scholar
Wong, M. L., Khatri, P., Licinio, J., Esposito, A. & Gold, P. W. Identification of hypothalamic transcripts upregulated by antidepressants. Biochem. Biophys. Res. Commun.229, 275–279 (1996). CASPubMed Google Scholar
Hyman, S. E. Mental illness. Genetically complex disorders of neural circuitry and neural communication. Neuron28, 321– 323 (2000). PubMedReviews the complexity of depression genetics. CASPubMed Google Scholar
Selye, H. A syndrome produced by diverse nocuous agents. Nature138, 32 (1936).In this one-page article, Selye launched the field of stress biology. He showed that the organism had common responses to various types of stressor, and described those responses as much as it was possible using the methods available to him in the 1930s. Google Scholar
Chrousos, G. P. & Gold, P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis . JAMA267, 1244–1252 (1992). CASPubMed Google Scholar
Brady, L. S., Whitfield, H. J. Jr, Fox, R. J., Gold, P. W. & Herkenham, M. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications . J. Clin. Invest.87, 831– 837 (1991). CASPubMedPubMed Central Google Scholar
Brady, L. S., Gold, P. W., Herkenham, M., Lynn, A. B. & Whitfield, H. J. Jr The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications . Brain Res.572, 117–125 (1992). CAS Google Scholar
Michelson, D. et al. Chronic imipramine is associated with diminished hypothalamic-pituitary-adrenal axis responsivity in healthy humans. J. Clin. Endocrinol. Metab.82, 2601–2606 ( 1997).References98–100show that attenuation of hypothalamus–pituitary–adrenal axis activity is a direct pharmacological effect of antidepressants. CASPubMed Google Scholar
Habib, K. E. et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc. Natl Acad. Sci. USA97, 6079–6084 (2000). CASPubMed Google Scholar