Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels (original) (raw)

References

  1. Borst, J. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.) 513, 149–155 (1998).
    Article CAS Google Scholar
  2. Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.) 512, 723–729 (1998).
    Article CAS Google Scholar
  3. Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 (1998).
    Article CAS Google Scholar
  4. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 175, 220–224 (1997).
    Google Scholar
  5. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).
    Article ADS CAS Google Scholar
  6. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).
    Article ADS CAS Google Scholar
  7. Lee, A., Scheuer, T. & Catterall, W. A. Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J. Neurosci. 20, 6830–6838 (2000).
    Article CAS Google Scholar
  8. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).
    Article CAS Google Scholar
  9. Chao, S. H., Suzuki, Y., Zysk, J. R. & Cheung, W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82 (1984).
    CAS PubMed Google Scholar
  10. Colecraft, H. M., Patil, P. G. & Yue, D. T. Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels. J. Gen. Physiol. 115, 175–192 (2000).
    Article CAS Google Scholar
  11. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).
    Article ADS CAS Google Scholar
  12. Zuhlke, R. D., Pitt, G. S., Tsien, R. W. & Reuter, H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J. Biol. Chem. 275, 21121–21129 (2000).
    Article CAS Google Scholar
  13. Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl Acad. Sci. USA 96, 2435–2438 (1999).
    Article ADS CAS Google Scholar
  14. Peterson, B. Z. et al. Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys. J. 78, 1906–1920 (2000).
    Article ADS CAS Google Scholar
  15. Houdusse, A. & Cohen, C. Target sequence recognition by the calmodulin superfamily: implications from light chain binding to the regulatory domain of scallop myosin. Proc. Natl Acad. Sci. USA 92, 10644–10647 (1995).
    Article ADS CAS Google Scholar
  16. Elshorst, B. et al. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38, 12320–12332 (1999).
    Article CAS Google Scholar
  17. Ehlers, M. D., Zhang, S., Bernhardt, J. P. & Huganir, R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755 (1996).
    Article CAS Google Scholar
  18. Putkey, J. A., Sweeney, H. L. & Campbell, S. T. Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J. Biol. Chem. 264, 12370–12378 (1989).
    CAS PubMed Google Scholar
  19. Mori, M. et al. Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39, 1316–1323 (2000).
    Article CAS Google Scholar
  20. Keen, J. E. et al. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19, 8830–8838 (1999).
    Article CAS Google Scholar
  21. Fanger, C. M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCal. J. Biol. Chem. 274, 5746–5754 (1999).
    Article CAS Google Scholar
  22. Erickson, M. G. & Yue, D. T. FRET reveals tethering of calmodulin to calcium channel complex in single living cells. Biophys. J. 80, 196a (2001).
    Google Scholar
  23. Rodney, G. G. et al. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine receptor. J. Biol. Chem. 276, 2069–2074 (2001).
    Article CAS Google Scholar
  24. Barth, A., Martin, S. R. & Bayley, P. M. Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle myosin light chain kinase target sequence. J. Biol. Chem. 273, 2174–2183 (1998).
    Article CAS Google Scholar
  25. Kink, J. A. et al. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell 62, 165–174 (1990).
    Article CAS Google Scholar
  26. Ohya, Y. & Botstein, D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 263, 963–966 (1994).
    Article ADS CAS Google Scholar
  27. Sutton, K. G., McRory, J. E., Guthrie, H., Murphy, T. H. & Snutch, T. P. P/Q-type calcium channels mediate the activity dependent feedback of syntaxin-1A. Nature 401, 800–804 (1999).
    Article ADS CAS Google Scholar
  28. Kincaid, R. L., Billingsley, M. L. & Vaughan, M. Preparation of fluorescent, cross-linking, and biotinylated calmodulin derivatives and their use in studies of calmodulin-activated phosphodiesterase and protein phosphatase. Methods Enzymol. 159, 605–626 (1988).
    Article CAS Google Scholar
  29. Patil, P. G., Brody, D. L. & Yue, D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron 20, 1027–1038 (1998).
    Article CAS Google Scholar
  30. Song, L. S., Sham, J. S., Stern, M. D., Lakatta, E. G. & Chang, H. Direct measurement of SR release flux by tracking ‘Ca2+ spikes’ in rat cardiac myocytes. J. Physiol. (Lond.) 512, 677–691 (1998).
    Article CAS Google Scholar

Download references