A defined range of guard cell calcium oscillation parameters encodes stomatal movements (original) (raw)

References

  1. Berridge, M. J. The AM and FM of calcium signalling. Nature 386, 759–760 (1997).
    Article ADS CAS Google Scholar
  2. MacRobbie, E. A. C. Signalling in guard cells and regulation of ion channel activity. J. Exp. Bot. 48, 515–528 (1997).
    Article CAS Google Scholar
  3. Allen, G. J. et al. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342 (2000).
    Article ADS CAS Google Scholar
  4. McAinsh, M. R. & Hetherington, A. M. Encoding specificity in Ca2+ signalling systems. Trends Plant Sci. 3, 32–36 (1998).
    Article Google Scholar
  5. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).
    Article ADS CAS Google Scholar
  6. Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).
    Article ADS CAS Google Scholar
  7. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).
    Article ADS CAS Google Scholar
  8. Himmelbach, A., Iten, M. & Grill, E. Signalling of abscisic acid to regulate plant growth. Phil. Trans. R. Soc. Lond. B 353, 1439–1444 (1998).
    Article CAS Google Scholar
  9. Li, W. et al. Cell-permeant cage InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).
    Article ADS CAS Google Scholar
  10. Gomez, T. M & Spitzer, N. C. In vivo regulation of axon extension and path finding by growth-cone calcium transients. Nature 397, 350–355 (1999).
    Article ADS CAS Google Scholar
  11. Camacho P, & Lechleiter, J. D. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium-ATPase. Science 260, 226–229 (1993).
    Article ADS Google Scholar
  12. Dal Santo, P., Logan, M. A., Chisholm, A. D. & Jorgensen, E. M. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98, 757–767 (1999).
    Article CAS Google Scholar
  13. Felle, H. Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174, 495–499 (1988).
    Article CAS Google Scholar
  14. McAinsh, M. R., Webb, A. A. R., Taylor, J. E. & Hetherington, A. M. Stimulus-induced oscillations in guard cell cytoplasmic free calcium. Plant Cell 7, 1207–1219 (1995).
    Article CAS Google Scholar
  15. Ehrhardt, D. W., Wais, R. & Long, S. R. Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85, 673–681 (1996).
    Article CAS Google Scholar
  16. Holdaway-Clarke, T. L., Feijó, J. A., Hackett, G. R., Kunkel, J. G. & Hepler, P. K. Pollen tube growth and intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9, 1999–2010 (1997).
    Article CAS Google Scholar
  17. Staxén, I. et al. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl Acad. Sci. USA 96,1779–1784 (1999).
    Article ADS Google Scholar
  18. Trewavas, A. J. & Malho, R. Ca2+ signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1, 428–433 (1998).
    Article CAS Google Scholar
  19. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999).
    Article ADS CAS Google Scholar
  20. Allen, G. J. et al. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747 (1999).
    Article CAS Google Scholar
  21. Gilroy, S., Fricker, M. D., Read, N. D. & Trewavas, A. J. Role of calcium in signal transduction of commelina guard-cells. Plant Cell 3, 333–344 (1991).
    Article CAS Google Scholar
  22. Grabov, A. & Blatt, M. R. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl Acad. Sci. USA 95, 4778–4783 (1998).
    Article ADS CAS Google Scholar
  23. Hamilton, D. W., Hills, A., Kohler, B. & Blatt, M. R. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl Acad. Sci. USA 97, 4967–4972 (2000).
    Article ADS CAS Google Scholar
  24. Pei, Z. M. et al. Hydrogen peroxide-activated Ca2+ channels mediate guard cell abscisic acid signalling. Nature 406, 731–734 (2000).
    Article ADS CAS Google Scholar
  25. Koornneef, M., Reuling, G. & Karssen, C. M. The isolation and characterisation of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant 61, 377–383 (1984).
    Article CAS Google Scholar
  26. Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. & McCourt, P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 1239–1241 (1996).
    Article ADS CAS Google Scholar
  27. Pei, Z. M., Ghassemian, M., Kwak, C. M., McCourt, P. & Schroeder, J. I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282, 287–290 (1998).
    Article ADS CAS Google Scholar
  28. Pei, Z. M. et al. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409–423 (1997).
    CAS Google Scholar
  29. Schroeder, J. I. & Hagiwara, S. Repetitive increases in cytoplasmic Ca2+ of guard cells by abscisic acid activation of non-selective Ca2+-permeable channels. Proc. Natl Acad. Sci. USA 87, 9305–9309 (1990).
    Article ADS CAS Google Scholar
  30. Blatt, M. R. Ca2+ signalling and control of guard-cell volume in stomatal movements. Curr. Opin. Plant Biol. 3, 196–204 (2000).
    Article CAS Google Scholar

Download references