Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas (original) (raw)
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ADSCASPubMed Google Scholar
Dalla-Favera, R. & Gaidano, G. in Cancer. Principles and Practice of Oncology (ed. DeVita, V. T. Jr, Hellman S. & Rosenberg, S. A.) 2215–2235 (Lippincott Williams & Wilkins, Philadelphia, 2001). Google Scholar
Klein, U. et al. Somatic hypermutation in normal and transformed human B cells. Immunol. Rev.162, 261–280 (1998). CASPubMed Google Scholar
Goossens, T., Klein, U. & Küppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA95, 2463–2468 (1998). ADSCASPubMedPubMed Central Google Scholar
Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature408, 216–221 (2000). ADSCASPubMed Google Scholar
Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity13, 589–597 (2000). CASPubMed Google Scholar
Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA95, 11816–11821 (1998). ADSCASPubMedPubMed Central Google Scholar
Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998). ADSCASPubMed Google Scholar
Müschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med.192, 1833–1840 (2000). PubMedPubMed Central Google Scholar
Storb, U. et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev.162, 153–160 (1998). CASPubMed Google Scholar
Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA92, 12520–12524 (1995). ADSCASPubMedPubMed Central Google Scholar
Rabbitts, T. H., Hamlyn, P. H. & Baer, R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature306, 760–765 (1983). ADSCASPubMed Google Scholar
Cuypers, H. T. et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell37, 141–150 (1984). CASPubMed Google Scholar
Akasaka, H. et al. Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res.60, 2335–2341 (2000). CASPubMed Google Scholar
Hoover, D., Friedmann, M., Reeves, R. & Magnuson, N. S. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J. Biol. Chem.266, 14018–14023 (1991). CASPubMed Google Scholar
Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity11, 709–719 (1999). CASPubMed Google Scholar
Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol.19, 1–11 (1999). CASPubMedPubMed Central Google Scholar
Raffeld, M. et al. Clustered mutations in the transcriptional activation domain of Myc in 8q24 translocated lymphomas and their functional consequences. Curr. Top. Microbiol. Immunol.194, 265–272 (1995). CASPubMed Google Scholar
Cesarman, E., Dalla-Favera, R., Bentley, D. & Groudine, M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science238, 1272–1275 (1987). ADSCASPubMed Google Scholar
Gu, W., Bhatia, K., Magrath, I. T., Dang, C. V. & Dalla-Favera, R. Binding and suppression of the Myc transcriptional activation domain by p107. Science264, 251–254 (1994). ADSCASPubMed Google Scholar
Preudhomme, C. et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene19, 2023–2032 (2000). CASPubMed Google Scholar
Morrison, A. M., Nutt, S. L., Thevenin, C., Rolink, A. & Busslinger, M. Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Semin. Immunol.10, 133–142 (1998). CASPubMed Google Scholar
Shen, H. M., Michael, N., Kim, N. & Storb, U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int. Immunol.12, 1085–1093 (2000). CASPubMed Google Scholar
Jungnickel, B. et al. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin's lymphoma. J. Exp. Med.191, 395–402 (2000). CASPubMedPubMed Central Google Scholar
Neuberger, M. S. et al. Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev.162, 107–116 (1998). CASPubMed Google Scholar
Zan, H. et al. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. J. Immunol.162, 3437–3447 (1999). CASPubMed Google Scholar
Gamberi, B. et al. Microsatellite instability is rare in B-cell non-Hodgkin's lymphomas. Blood89, 975–979 (1997). CASPubMed Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). CASPubMed Google Scholar
Cigudosa, J. C. et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosom. Cancer25, 123–133 (1999). CASPubMed Google Scholar
Pasqualucci, L., Neri, A., Baldini, L., Dalla-Favera, R. & Migliazza, A. BCL-6 mutations are associated with immunoglobulin variable heavy chain mutations in B-cell chronic lymphocytic leukemia. Cancer Res.60, 5644–5648 (2000). CASPubMed Google Scholar