Alzheimer's disease and Aβ toxicity: from top to bottom (original) (raw)
Small, D. H. & McLean, C. A. Alzheimer's disease and the amyloid β protein: what is the role of amyloid? J. Neurochem.73, 443–449 (1999). ArticleCASPubMed Google Scholar
Nunan, J. & Small, D. H. Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett.483, 6–10 (2000). ArticleCASPubMed Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 (1996). ArticleCASPubMed Google Scholar
Terry, R. D. Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol.59, 1118–1119 (2000). ArticleCASPubMed Google Scholar
National Institute on Drug Abuse. Computational neuroscience at the NIH. Nature Neurosci.3, 1161–1164 (2000).
McClelland, J. L. & Goddard, N. H. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus6, 654–665 (1996). ArticleCASPubMed Google Scholar
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA79, 2554–2558 (1982). ArticleCASPubMedPubMed Central Google Scholar
Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA81, 3088–3092 (1984). ArticleCASPubMedPubMed Central Google Scholar
Sakurai, Y. Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. J. Neurosci.14, 2606–2623 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sakurai, Y. How do cell assemblies encode information in the brain? Neurosci. Biobehav. Rev.23, 785–796 (1999). ArticleCASPubMed Google Scholar
Amit, D. J. & Treves, A. Associative memory neural network with low temporal spiking rates. Proc. Natl Acad. Sci. USA86, 7871–7875 (1989). ArticleCASPubMedPubMed Central Google Scholar
Davies, C. A., Mann, D. M., Sumpter, P. Q. & Yates, P. O. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci.78, 151–164 (1987). ArticleCASPubMed Google Scholar
Esiri, M. M., Pearson, R. C. A., Steele, J. E., Bowen, D. M. & Powell, T. P. A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry53, 161–165 (1990). ArticleCASPubMedPubMed Central Google Scholar
Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K. & Powell, T. P. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl Acad. Sci. USA82, 4531–4534 (1985). ArticleCASPubMedPubMed Central Google Scholar
Horn, D., Levy, N. & Ruppin, E. Neuronal-based synaptic compensation: a computational study in Alzheimer's disease. Neural Comput.8, 1227–1243 (1996). ArticleCASPubMed Google Scholar
Ruppin, E. & Reggia, J. A. A neural model of memory impairment in diffuse cerebral atrophy. Br. J. Psychiatry166, 19–28 (1995). ArticleCASPubMed Google Scholar
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nature Neurosci.3, 1178–1183 (2000). ArticleCASPubMed Google Scholar
Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci.22, 221–227 (1999). ArticleCASPubMed Google Scholar
Turrigiano, G. G. & Nelson, S. G. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol.10, 358–364 (2000). ArticleCASPubMed Google Scholar
Chechik, G., Meilijson, I. & Ruppin, E. Effective neuronal learning with ineffective Hebbian learning rules. Neural Comput.13, 817–840 (2001). ArticleCASPubMed Google Scholar
Horn, D., Levy, N. & Ruppin, E. Memory maintenance via neuronal regulation. Neural Comput.10, 1–18 (1998). ArticleCASPubMed Google Scholar
Horn, D., Levy, N. & Ruppin, E. Neuronal regulation versus synaptic unlearning in memory maintenance mechanisms. Netw. Comput. Neural Syst.9, 577–586 (1998). ArticleCAS Google Scholar
Harrison, P. J., Barton, A. J., Najlerahim, A. & Pearson, R. C. A. Distribution of a kainate/AMPA receptor mRNA in normal and Alzheimer brain. Neuroreport1, 149–152 (1990). ArticleCASPubMed Google Scholar
Impey, S., Obrietan, K. & Storm, D. R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron23, 11–14 (1999). ArticleCASPubMed Google Scholar
Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science292, 2337–2340 (2001). ArticleCASPubMed Google Scholar
Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science275, 213–215 (1997). ArticleCASPubMed Google Scholar
Van Rossum, M. C. W., Bi, G. Q. & Turrigiano, G. G. Stable hebbian learning from spike timing-dependent plasticity. J. Neurosci.20, 8812–8821 (2000). ArticleCASPubMedPubMed Central Google Scholar
Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science275, 209–213 (1997). ArticleCASPubMed Google Scholar
Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci.18, 3919–3928 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kistler, W. M. & Van Hemmen, J. L. Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Comput.12, 385–405 (2000). ArticleCASPubMed Google Scholar
Knowles, R. B. et al. Plaque-induced neurite abnormalities: implication for disruption of neural networks in Alzheimer's disease. Proc. Natl Acad. Sci. USA96, 5274–5279 (1999). ArticleCASPubMedPubMed Central Google Scholar
Purves, D., Voyvodic, J. T., Magrassi, L. & Yawo, H. Nerve terminal remodeling visualized in living mice by repeated examination of the same neuron. Science238, 1122–1126 (1987). ArticleCASPubMed Google Scholar
Kapur, A., Yeckel, M. F., Gray, R. & Johnston, D. L-type calcium channels are required for one form of hippocampal mossy fiber LTP. J. Neurophysiol.79, 2181–2190 (1998). ArticleCASPubMed Google Scholar
Segal, M. Imaging of calcium variations in living dendritic spines of cultured rat hippocampal neurons. J. Physiol.486, 283–295 (1995). ArticleCASPubMedPubMed Central Google Scholar
Arendt, T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience102, 723–765 (2001). ArticleCASPubMed Google Scholar
Phinney, A. L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci.19, 8552–8559 (1999). ArticleCASPubMedPubMed Central Google Scholar
Meberg, P. J., Kossel, A. H., Williams, C. B. & Kater, S. B. Calcium-dependent alterations in dendritic architecture of hippocampal pyramidal neurons. Neuroreport10, 639–644 (1999). ArticleCASPubMed Google Scholar
Mattson, M. P., Tomaselli, K. J. & Rydel, R. E. Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res.621, 35–49 (1993). ArticleCASPubMed Google Scholar
Mattson, M. P. et al. β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci.12, 376–389 (1992). ArticleCASPubMedPubMed Central Google Scholar
Weiss, J. H., Pike, C. J. & Cotman, C. W. Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem.62, 372–375 (1994). ArticleCASPubMed Google Scholar
Ueda, K., Shinohara, S., Yagami, T., Asakura, K. & Kawasaki, K. Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals. J. Neurochem.68, 265–271 (1997). ArticleCASPubMed Google Scholar
Sberna, G., Sáez-Valero, J., Beyreuther, K., Masters, C. L. & Small, D. H. The amyloid-β protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J. Neurochem.69, 1177–1184 (1997). ArticleCASPubMed Google Scholar
Ferrer, I. et al. Phosphorylated Map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol.11, 144–158 (2001). ArticleCASPubMed Google Scholar
Dineley, K. T. et al. β-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci.21, 4125–4133 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. Y. et al. β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J. Biol. Chem.275, 5626–5632 (2000). ArticleCASPubMed Google Scholar
Liu, Q. S., Kawai, H. & Berg, D. K. β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc. Natl Acad. Sci. USA98, 4734–4739 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pettit, D. L., Shao, Z. & Yakel, J. L. β-Amyloid1–42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci.21, RC120, 1–5 (2001). | PubMed | Article Google Scholar
Cheung, N. S., Small, D. H. & Livett, B. G. An amyloid peptide, βA4 25–35, mimics the function of substance P on modulation of nicotine-evoked secretion and desensitization in cultured bovine adrenal chromaffin cells. J. Neurochem.60, 1163–1166 (1993). ArticleCASPubMed Google Scholar
Kihara, T. et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a β-amyloid-induced neurotoxicity. J. Biol. Chem.276, 13541–13546 (2001). ArticleCASPubMed Google Scholar
Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell77, 817–827 (1994). ArticleCASPubMed Google Scholar
Pike, C. J., Ramezan-Arab, N. & Cotman, C. W. β-Amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants. J. Neurochem.69, 1601–1611 (1997). ArticleCASPubMed Google Scholar
Hensley, K. et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl Acad. Sci. USA91, 3270–3274 (1994). ArticleCASPubMedPubMed Central Google Scholar
White, A. R., Bush, A. I., Beyreuther, K., Masters, C. L. & Cappai, R. Exacerbation of copper toxicity in primary neuronal cultures depleted of cellular glutathione. J. Neurochem.72, 2092–2098 (1999). ArticleCASPubMed Google Scholar
Kawahara, M. & Kuroda, Y. Molecular mechanism of neurodegeneration induced by Alzheimer's β-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull.53, 389–397 (2000). ArticleCASPubMed Google Scholar
Kawahara, M., Kuroda, Y., Arispe, N. & Rojas, E. Alzheimer's β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem.275, 14077–14083 (2000). ArticleCASPubMed Google Scholar
Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci.15, 6239–6249 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature405, 360–364 (2000). ArticleCASPubMed Google Scholar
Lorenzo, A. et al. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nature Neurosci.3, 460–464 (2000). ArticleCASPubMed Google Scholar
Hertel, C. et al. Inhibition of the electrostatic interaction between β-amyloid peptide and membranes prevents β-amyloid-induced toxicity. Proc. Natl Acad. Sci. USA94, 9412–9416 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yaar, M. et al. Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest.100, 2333–2340 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kuner, P., Schubenel, R. & Hertel, C. β-Amyloid binds to p75NTR and activates NFκB in human neuroblastoma cells. J. Neurosci. Res.54, 798–804 (1998). ArticleCASPubMed Google Scholar
Kane, M. D. et al. Inhibitors of V-type ATPases, bafilomycin A1 and concanamycin A, protect against β-amyloid-mediated effects on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem.72, 1939–1947 (1999). ArticleCASPubMed Google Scholar
Zhang, Z. et al. Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation. J. Neurochem.67, 1595–1606 (1996). ArticleCASPubMed Google Scholar
Ivins, K. J., Ivins, J. K., Sharp, J. P. & Cotman, C. W. Multiple pathways of apoptosis in PC12 cells. CrmA inhibits apoptosis induced by β-amyloid. J. Biol. Chem.274, 2107–2112 (1999). ArticleCASPubMed Google Scholar
Ivins, K. J., Thornton, P. L., Rohn, T. T. & Cotman, C. W. Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol. Dis.6, 440–449 (1999). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature403, 98–103 (2000). ArticleCASPubMed Google Scholar
Anderson, A. J., Pike, C. J. & Cotman, C. W. Differential induction of immediate early gene proteins in cultured neurons by β-amyloid (Aβ): association of c-Jun with Aβ-induced apoptosis. J. Neurochem.65, 1487–1498 (1995). ArticleCASPubMed Google Scholar
Estus, S. et al. Aggregated amyloid-β protein induces cortical neuronal apoptosis and concomitant 'apoptotic' pattern of gene induction. J. Neurosci.17, 7736–7745 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kihiko, M. E., Tucker, H. M., Rydel, R. E. & Estus, S. c-Jun contributes to amyloid β-induced neuronal apoptosis but is not necessary for amyloid β-induced c-jun induction. J. Neurochem.73, 2609–2612 (1999). ArticleCASPubMed Google Scholar
Troy, C. M. et al. β-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J. Neurochem.77, 157–164 (2001). ArticleCASPubMed Google Scholar
Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R. & Park, D. S. Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F·DP, in β-amyloid-induced neuronal death. J. Biol. Chem.274, 19011–19016 (1999). ArticleCASPubMed Google Scholar
Giovanni, A. et al. E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J. Biol. Chem.275, 11553–11560 (2000). ArticleCASPubMed Google Scholar
Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA90, 7951–7955 (1993). ArticleCASPubMedPubMed Central Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticleCASPubMed Google Scholar
Yan, S. D. et al. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl Acad. Sci. USA94, 5296–5301 (1997). ArticleCASPubMedPubMed Central Google Scholar
Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci.21, 1179–1188 (2001). ArticleCASPubMedPubMed Central Google Scholar
McDonald, D. R., Bamberger, M. E., Combs, C. K. & Landreth, G. E. β-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci.18, 4451–4460 (1998). ArticleCASPubMedPubMed Central Google Scholar
Combs, C. K., Johnson, D. E., Cannady, S. B., Lehman, T. M. & Landreth, G. E. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β -amyloid and prion proteins. J. Neurosci.19, 928–939 (1999). ArticleCASPubMedPubMed Central Google Scholar
Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature374, 647–650 (1995). ArticleCASPubMed Google Scholar
El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature382, 716–719 (1996). ArticleCASPubMed Google Scholar
Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron17, 553–565 (1996). ArticleCASPubMed Google Scholar
Akama, K. T., Albanese, C., Pestell, R. G. & Van Eldik, L. J. Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc. Natl Acad. Sci. USA95, 5795–5800 (1998). ArticleCASPubMedPubMed Central Google Scholar
Akama, K. T. & Van Eldik, L. J. β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκB-inducing kinase-dependent signaling mechanism. J. Biol. Chem.275, 7918–7924 (2000). ArticleCASPubMed Google Scholar
Yan, S. D. et al. An intracellular protein that binds amyloid–β peptide and mediates neurotoxicity in Alzheimer's disease. Nature389, 689–695 (1997). ArticleCASPubMed Google Scholar