Molecular basis of mechanosensory transduction (original) (raw)
Chalfie, M. A molecular model for mechanosensation in Caenorhabditis elegans. Biol. Bull.192, 125–130 (1997). CASPubMed Google Scholar
Tavernarakis, N. & Driscoll, M. Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol.59, 659–689 (1997). CASPubMed Google Scholar
Hudspeth, A. J. Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. Soc. Gen. Physiol. Ser.47, 357–370 (1992). CASPubMed Google Scholar
Narins, P. M. & Lewis, E. R. The vertebrate ear as an exquisite seismic sensor. J. Acoust. Soc. Am.76, 1384–1387 (1984). ADSCASPubMed Google Scholar
Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature368, 265–268 (1994). ADSCASPubMed Google Scholar
Kloda, A. & Martinac, B. Molecular identification of a mechanosensitive channel in archaea. Biophys. J.80, 229–240 (2001). CASPubMedPubMed Central Google Scholar
Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol.82, 358–370 (1981). CASPubMed Google Scholar
Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science243, 1027–1033 (1989). ADSCASPubMed Google Scholar
Duggan, A., Ma, C. & Chalfie, M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development125, 4107–4119 (1998). CASPubMed Google Scholar
Way, J. C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell54, 5–16 (1988). CASPubMed Google Scholar
Savage, C. et al. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev.3, 870–881 (1989). CASPubMed Google Scholar
Fukushige, T. et al. MEC-12, an α-tubulin required for touch sensitivity in C. elegans. J. Cell Sci.112, 395–403 (1999). CASPubMed Google Scholar
Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature378, 292–295 (1995). ADSCASPubMed Google Scholar
Du, H., Gu, G., William, C. M. & Chalfie, M. Extracellular proteins needed for C. elegans mechanosensation. Neuron16, 183–194 (1996). CASPubMed Google Scholar
Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA93, 6577–6582 (1996). ADSCASPubMed Google Scholar
Alvarez de la Rosa, D., Canessa, C. M., Fyfe, G. K. & Zhang, P. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol.62, 573–594 (2000). Google Scholar
Garcia-Anoveros, J., Ma, C. & Chalfie, M. Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr. Biol.5, 441–448 (1995). CASPubMed Google Scholar
Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature367, 467–470 (1994). ADSCASPubMed Google Scholar
Garcia-Anoveros, J., Garcia, J. A., Liu, J. D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron20, 1231–1241 (1998). CASPubMed Google Scholar
Kizer, N., Guo, X. L. & Hruska, K. Reconstitution of stretch-activated cation channels by expression of the α-subunit of the epithelial sodium channel cloned from osteoblasts. Proc. Natl Acad. Sci. USA94, 1013–1018 (1997). ADSCASPubMed Google Scholar
Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol.140, 143–152 (1998). CASPubMedPubMed Central Google Scholar
Drummond, H. A., Price, M. P., Welsh, M. J. & Abboud, F. M. A molecular component of the arterial baroreceptor mechanotransducer. Neuron21, 1435–1441 (1998). CASPubMed Google Scholar
Garcia-Anoveros, J., Samad, T. A., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci.21, 2678–2686 (2001). CASPubMed Google Scholar
Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature407, 1007–1011 (2000). ADSCASPubMed Google Scholar
Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res.299, 327–334 (2000). CASPubMed Google Scholar
Drummond, H. A., Abboud, F. M. & Welsh, M. J. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res.884, 1–12 (2000). CASPubMed Google Scholar
Hummler, E. & Horisberger, J. D. Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am. J. Physiol.276, G567–G571 (1999).
Kernan, M., Cowan, D. & Zuker, C. Genetic dissection of mechanosensory transduction: mechanoreception—defective mutations of Drosophila. Neuron12, 1195–1206 (1994). CASPubMed Google Scholar
Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science287, 2229–2234 (2000). ADSCASPubMed Google Scholar
Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci.20, 5981–5988 (2000). CASPubMed Google Scholar
Chung, Y. D., Zhu, J., Han, Y. & Kernan, M. J. nompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron29, 415–428 (2001). CASPubMed Google Scholar
Legan, P. K., Rau, A., Keen, J. N. & Richardson, G. P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem.272, 8791–8801 (1997). CASPubMed Google Scholar
Sedgwick, S. G. & Smerdon, S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci.24, 311–316 (1999). CASPubMed Google Scholar
Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci.17, 8259–8269 (1997). CASPubMed Google Scholar
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell103, 525–535 (2000). CASPubMedPubMed Central Google Scholar
Schweisguth, F., Gho, M. & Lecourtois, M. Control of cell fate choices by lateral signaling in the adult peripheral nervous system of Drosophila melanogaster. Dev. Genet.18, 28–39 (1996). CASPubMed Google Scholar
Adam, J. et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development125, 4645–4654 (1998). CASPubMed Google Scholar
Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science284, 1837–1841 (1999). CASPubMed Google Scholar
Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development127, 1039–1048 (2000). CASPubMed Google Scholar
Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci.3, 962–976 (1983). CASPubMed Google Scholar
van Netten, S. M. & Kros, C. J. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc. R. Soc. Lond. B267, 1915–1923 (2000). CAS Google Scholar
Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Res.15, 103–112 (1984). CAS Google Scholar
Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-cell tip links. Proc. Natl Acad. Sci. USA97, 13336–13341 (2000). ADSCASPubMed Google Scholar
Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature281, 675–677 (1979). ADSCASPubMed Google Scholar
Crawford, A. C., Evans, M. G. & Fettiplace, R. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J. Physiol.434, 369–398 (1991). CASPubMedPubMed Central Google Scholar
Ricci, A. J. & Fettiplace, R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J. Physiol.506, 159–173 (1998). CASPubMedPubMed Central Google Scholar
Kroese, A. B., Das, A. & Hudspeth, A. J. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics. Hear Res.37, 203–217 (1989). CASPubMed Google Scholar
Rusch, A., Kros, C. J. & Richardson, G. P. Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J. Physiol.474, 75–86 (1994). CASPubMedPubMed Central Google Scholar
Sand, O. Effects of different ionic environments on the mechano-sensitivity of the lateral line organs in the mudpuppy. J. Comp. Physiol. A102, 27–42 (1975). CAS Google Scholar
Glowatzki, E., Ruppersberg, J. P., Zenner, H. P. & Rusch, A. Mechanically and ATP-induced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine. Neuropharmacology36, 1269–1275 (1997). CASPubMed Google Scholar
Baumann, M. & Roth, A. The Ca2+ permeability of the apical membrane in neuromast hair cells. J. Comp. Physiol.158, 681–688 (1986). CAS Google Scholar
Jorgensen, F. & Kroese, A. B. Ca selectivity of the transduction channels in the hair cells of the frog sacculus. Acta Physiol. Scand.155, 363–376 (1995). CASPubMed Google Scholar
Rusch, A. & Hummler, E. Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel. Hear Res.131, 170–176 (1999). CASPubMed Google Scholar
Housley, G. D. et al. Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J. Neurosci.19, 8377–8388 (1999). CASPubMed Google Scholar
Housley, G. D., Luo, L. & Ryan, A. F. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J. Comp. Neurol.393, 403–414 (1998). CASPubMed Google Scholar
Kros, C. J., Rüsch, A. & Richardson, G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc. R. Soc. Lond. B249, 185–193 (1992). ADSCAS Google Scholar
Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci.23, 159–166 (2000). CAS Google Scholar
Hudspeth, A. J. & Gillespie, P. G. Pulling springs to tune transduction: adaptation by hair cells. Neuron12, 1–9 (1994). CASPubMed Google Scholar
Howard, J. & Hudspeth, A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl Acad. Sci. USA84, 3064–3068 (1987). ADSCASPubMed Google Scholar
Steel, K. P. & Kros, C. J. A genetic approach to understanding auditory function. Nature Genet.27, 143–149 (2001). CASPubMed Google Scholar
Liu, J., Schrank, B. & Waterston, R. H. Interaction between a putative mechanosensory membrane channel and a collagen. Science273, 361–364 (1996). ADSCASPubMed Google Scholar
Ricci, A. J. & Fettiplace, R. The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J. Physiol.501, 111–124 (1997). CASPubMedPubMed Central Google Scholar
Benser, M. E., Marquis, R. E. & Hudspeth, A. J. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus. J. Neurosci.16, 5629–5643 (1996). CASPubMed Google Scholar
Ricci, A. J., Crawford, A. C. & Fettiplace, R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J. Neurosci.20, 7131–7142 (2000). CASPubMed Google Scholar
Martin, P., Mehta, A. D. & Hudspeth, A. J. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl Acad. Sci. USA97, 12026–12031 (2000). ADSCASPubMed Google Scholar
Gillespie, P. G. & Corey, D. P. Myosin and adaptation by hair cells. Neuron19, 955–958 (1997). CASPubMed Google Scholar
Richardson, G. P. et al. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells. Ann. NY Acad. Sci.884, 110–124 (1999). CASPubMed Google Scholar
Gillespie, P. G. & Hudspeth, A. J. High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J. Cell Biol.112, 625–640 (1991). CASPubMed Google Scholar
Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature374, 62–64 (1995). ADSCASPubMed Google Scholar
Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development125, 557–566 (1998). CASPubMed Google Scholar
Ernest, S. et al. Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol. Genet.9, 2189–2196 (2000). CASPubMed Google Scholar
Bolz, H. et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genet.27, 108–112 (2001). CASPubMed Google Scholar
Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genet.27, 103–107 (2001). CASPubMed Google Scholar
Ahmed, Z. M. et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet.69, 25–34 (2001). CASPubMedPubMed Central Google Scholar
Alagramam, K. N. et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet.10, 1709–1718 (2001). CASPubMed Google Scholar
Alagramam, K. N. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nature Genet.27, 99–102 (2001). CASPubMed Google Scholar
Eudy, J. D. et al. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science280, 1753–1757 (1998). ADSCASPubMed Google Scholar
Kussel-Andermann, P. et al. Unconventional myosin VIIA is a novel A-kinase-anchoring protein. J. Biol. Chem.275, 29654–29659 (2000). CASPubMed Google Scholar
Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J.19, 6020–6029 (2000). CASPubMedPubMed Central Google Scholar
Self, T. et al. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol.214, 331–341 (1999). CASPubMed Google Scholar
Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol.148, 363–373 (2000). CASPubMedPubMed Central Google Scholar
Zhao, Y., Yamoah, E. N. & Gillespie, P. G. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc. Natl Acad. Sci. USA93, 15469–15474 (1996). ADSCASPubMed Google Scholar
Kozel, P. J. et al. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem.273, 18693–18696 (1998). CASPubMed Google Scholar
Street, V. A., McKee-Johnson, J. W., Fonseca, R. C., Tempel, B. L. & Noben-Trauth, K. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nature Genet.19, 390–394 (1998). CASPubMed Google Scholar
Takahashi, K. & Kitamura, K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem. Biophys. Res. Commun.261, 773–778 (1999). CASPubMed Google Scholar
Dumont, R. et al. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci.21, 5066–5078 (2001). CASPubMed Google Scholar
Yamoah, E. N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci.18, 610–624 (1998). CASPubMed Google Scholar
Shepherd, G. M. G., Barres, B. A. & Corey, D. P. “Bundle-blot” purification and initial protein characterization of hair cell stereocilia. Proc. Natl Acad. Sci. USA86, 4973–4977 (1989). ADSCASPubMed Google Scholar
Walker, R. G., Hudspeth, A. J. & Gillespie, P. G. Calmodulin and calmodulin-binding proteins in hair bundles. Proc. Natl Acad. Sci. USA90, 2807–2811 (1993). ADSCASPubMed Google Scholar
Walker, R. G. & Hudspeth, A. J. Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus. Proc. Natl Acad. Sci. USA93, 2203–2207 (1996). ADSCASPubMed Google Scholar
Noben-Trauth, K., Zheng, Q. Y., Johnson, K. R. & Nishina, P. M. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics44, 266–272 (1997). CASPubMed Google Scholar
Flock, A., Cheung, H. C., Flock, B. & Utter, G. Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunofluorescence/electron microscopy. J. Neurocytol.10, 133–147 (1981). CASPubMed Google Scholar
Tilney, M. S. et al. Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J. Cell Biol.109, 1711–1723 (1989). CASPubMed Google Scholar
Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell102, 377–385 (2000). CASPubMedPubMed Central Google Scholar
Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science278, 1315–1318 (1997). ADSCASPubMed Google Scholar