How nucleotide excision repair protects against cancer (original) (raw)
Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis. (ASM Press, Washington, 1995). Google Scholar
Lindahl, T. Instability and decay of the primary structure of DNA. Nature362, 709–715 (1993). ArticleCASPubMed Google Scholar
Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science286, 1897–1905 (1999). CASPubMed Google Scholar
Lindahl, T. The Croonian Lecture, 1996: endogenous damage to DNA. Phil. Trans. R. Soc. Lond. B351, 1529–1538 (1996). CAS Google Scholar
Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev.48, 60–93 (1984). CASPubMedPubMed Central Google Scholar
Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem.69, 497–529 (2000). CASPubMed Google Scholar
Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). CASPubMed Google Scholar
Friedberg, E. C. Summary: Biological responses to DNA damage: a perspective in the new millennium. Cold Spring Harbor Symp. Quant. Biol.65, 593–602 (2000). CASPubMed Google Scholar
Lindahl, T., Karran, P. & Wood, R. D. DNA excision repair pathways. Curr. Opin. Genet. Dev.7, 158–169 (1997). CASPubMed Google Scholar
Friedberg, E. C. & Wood, R. D. in DNA Replication in Eukaryotic Cells (ed. dePamphilis, M.) 249–269 (Cold Spring Harbor Laboratory Press, Long Island, 1996). Google Scholar
Lindahl, T. Suppression of spontaneous mutagenesis in human cells by DNA base excision repair. Mutat. Res.462, 129–135 (2000). CASPubMed Google Scholar
Memisoglu, A. & Samson, L. Base excision repair in yeast and mammals. Mutat. Res.451, 39–51 (2000). CASPubMed Google Scholar
Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P. & Tainer, J. A. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct.28, 101–128 (1999). CASPubMed Google Scholar
Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M. & Slupphaug, G. Base excision repair of DNA in mammalian cells. FEBS Lett.476, 73–77 (2000). CASPubMed Google Scholar
McCullough, A. K., Dodson, M. L. & Lloyd, R. S. Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem.68, 255–285 (1999). CASPubMed Google Scholar
Parikh, S. S., Mol, C. D., Hosfield, D. J. & Tainer, J. A. Envisioning the molecular choreography of DNA base excision repair. Curr. Opin. Struct. Biol.9, 37–47 (1999). CASPubMed Google Scholar
de Boer, J. & Hoeijmakers, J. H. J. Nucleotide excision repair and human syndromes. Carcinogenesis21, 453–460 (2000). CASPubMed Google Scholar
Prakash, S. & Prakash, L. Nucleotide excision repair in yeast. Mutat. Res.451, 13–24 (2000). CASPubMed Google Scholar
de Laat, W. L., Jaspers, N. G. J. & Hoeijmakers, J. H. J. Molecular mechanism of nucleotide excision repair. Genes Dev.13, 768–785 (1999). CASPubMed Google Scholar
Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie81, 15–25 (1999). CASPubMed Google Scholar
Wood, R. D. Nucleotide excision repair in mammalian cells. J. Biol. Chem.272, 23465–23468 (1997). CASPubMed Google Scholar
Buermeyer, A. B., Deschenes, S. M., Baker, S. M. & Liskay, R. M. Mammalian DNA mismatch repair. Annu. Rev. Genet.33, 533–564 (1999). CASPubMed Google Scholar
Modrich, P. Strand-specific mismatch repair in mammalian cells. J. Biol. Chem.272, 24727–24730 (1997). CASPubMed Google Scholar
Svejstrup, J. Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell80, 21–28 (1995).An early contribution to our understanding of the role of the transcription factor TFIIH in NER in yeast. CASPubMed Google Scholar
Rodriguez, K. et al. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J. Biol. Chem.273, 34180–34189 (1998). CASPubMed Google Scholar
Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem.271, 8903–8910 (1996). CASPubMed Google Scholar
Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell80, 859–868 (1995). CASPubMed Google Scholar
Wakasugi, M. & Sancar, A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl Acad. Sci. USA95, 6669–6674 (1998). CASPubMedPubMed Central Google Scholar
Guzder, S. N., Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem.270, 12973–12976 (1995).References28–30are landmark studies on the reconstitution of NERin vitrowith purified proteins. CASPubMed Google Scholar
Levin, D. S., McKenna, A. E., Motycka, T. A., Matsumoto, Y. & Tomkinson, A. E. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base excision repair. Curr. Biol.10, 919–922 (2000). CASPubMed Google Scholar
Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol.8, 563–587 (1992). CASPubMed Google Scholar
Robertson, K. D. & Jones, P. A. Dynamic interrelationships between DNA replication, methylation and repair. Am. J. Hum. Genet.61, 1220–1224 (1997). CASPubMedPubMed Central Google Scholar
Thoma, F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J.18, 6585–6598 (1999). CASPubMedPubMed Central Google Scholar
Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev.15, 507–521 (2001). CASPubMedPubMed Central Google Scholar
Wood, R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie81, 39–44 (1999). CASPubMed Google Scholar
Naegeli, H. in DNA Recombination and Repair (eds Smith, P. & Jones, C.) 99–137 (Oxford Univ. Press, Oxford, 1999). Google Scholar
Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genomic nucleotide excision repair. Mol. Cell2, 223–232 (1998).An important study, explaining the role of XPC protein in the recognition of base damage during NER. CASPubMed Google Scholar
Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J.13, 1831–1843 (1994). CASPubMedPubMed Central Google Scholar
Sugasawa, K. et al. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol. Cell. Biol.16, 4852–4861 (1996). CASPubMedPubMed Central Google Scholar
Araki, M. et al. Centrosome protein centrin2/caltractin1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem.276, 18665–18672 (2001). CASPubMed Google Scholar
Hess, M. T., Schwitter, U., Petretta, M., Giese, B. & Naegeli, H. Bipartite substrate discrimination by human nucleotide excision repair. Proc. Natl Acad. Sci. USA94, 6664–6669 (1997).An excellent contribution to recent models for the molecular basis of damage recognition during NER. CASPubMedPubMed Central Google Scholar
Friedberg, E. C. Relationships between DNA repair and transcription. Annu. Rev. Biochem.65, 15–42 (1996). CASPubMed Google Scholar
Hanawalt, P. C. Transcription-coupled repair and human disease. Science266, 1957–1958 (1994). CASPubMed Google Scholar
Hanawalt, P. C. & Spivak, G. in Advances in DNA Repair (eds Dizdaroglu, M. & Karakaya, A.) 169–179 (Academic/Plenum Publishing, New York, 1999). Google Scholar
Tsutakawa, S. E. & Cooper, P. K. Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. Cold Spring Harbor Symp. Quant. Biol.65, 201–215 (2000). CASPubMed Google Scholar
Friedberg, E. C. Cockayne Syndrome: a primary defect in DNA repair, transcription, both or neither? BioEssays18, 731–738 (1996). CASPubMed Google Scholar
Hebra, F. & Kaposi, M. On Diseases of the Skin, including the Exanthemata. Vol. 16 (translated by W. Tay, London) 252–258 (New Sydenham Society, London, 1874). Google Scholar
Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature218, 652–656 (1968). CASPubMed Google Scholar
Setlow, R. B., Regan, J. D., German, J. & Carrier. W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc. Natl Acad. Sci. USA64, 1035–1041 (1969). CASPubMedPubMed Central Google Scholar
Cleaver, J. E. & Kraemer, K. H. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 4393–4419 (McGraw–Hill, New York, 1995). Google Scholar
Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. H. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K, W.) 245–274 (McGraw–Hill, New York, 1998). Google Scholar
Hoeijmakers, J. H. J. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer30A, 1912–1921 (1994). CASPubMed Google Scholar
Masutani, C. et al. Xeroderma pigmentosum variant: from a human genetic disorder to a novel DNA polymerase. Cold Spring Harbor Symp. Quant. Biol.65, 71–80 (2000). CASPubMed Google Scholar
Nowell, P. C. The clonal evolution of tumor cell populations. Science194, 23–28 (1976). CASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). CASPubMed Google Scholar
Friedberg, E. C. Cancer predisposition associated with defective DNA repair-studies with mutant mouse strains. Cancer J. Sci. Am.5, 257–263 (1999). CASPubMed Google Scholar
Friedberg, E. C. & Meira, L. B. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Version 4. Mutat. Res.459, 243–274 (2000).A comprehensive database of mouse mutants defective in various DNA repair modes. CASPubMed Google Scholar
de Vries, A. & van Steeg, H. Xpa knockout mice. Sem. Can. Biol.7, 229–240 (1996). CAS Google Scholar
Cheo, D. L., Burns D. K., Meira, L. B., Houle, J. F. & Friedberg, E. C. Mutational inactivation of the xeroderma pigmentosum group C gene confers predisposition to 2-acetylaminofluorene-induced liver and lung cancer and to spontaneous testicular cancer in _Trp53_−/− mice. Cancer Res.59, 771–775 (1999). CASPubMed Google Scholar
Hanawalt, P. C. Revisiting the rodent repairadox. Env. Mol. Mutagen. (in the press).
Swift, M. & Chase, C. Cancer in families with xeroderma pigmentosum. J. Natl Cancer Inst.62, 1415–1421 (1979). CASPubMed Google Scholar
Cheo, D. L., Meira, L. B., Burns, D. K, Reis, A. M. & Friedberg, E. C. UVB radiation-induced skin cancer in mice defective in the Xpc, Trp53 and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res.60, 1580–1584 (2000). CASPubMed Google Scholar
Wijnhoven, S. W. P. et al. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene19, 5034–5037 (2000). CASPubMed Google Scholar
McWhir, J., Selfridge, J., Harrison, D. J., Squires, S. & Melton, D. W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet.5, 217–224 (1993). CASPubMed Google Scholar
Weeda, G. et al. Disruption of the mouse ERCC1 gene results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol.7, 427–439 (1997). CASPubMed Google Scholar
Taylor, E. M. et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD(ERCC2) repair/transcription gene. Proc. Natl Acad. Sci. USA94, 8658–8663 (1997). CASPubMedPubMed Central Google Scholar
Lehmann, A. R. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev.15, 15–23 (2000). Google Scholar
Vermeulen, W. et al. Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH). Evidence for the existence of a transcription syndrome. Cold Spring Harb, Symp. Quant. Biol.54, 317–329 (1994). Google Scholar
de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell1, 981–990 (1998). CASPubMed Google Scholar
Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genet.26, 307–313 (2000). CASPubMed Google Scholar
Harada, Y.-N. et al. Post-natal growth failure, a short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol. Cell. Biol.19, 2366–2372 (1999). CASPubMedPubMed Central Google Scholar
Nouspiekel, T., Lalle, P., Leadon, S. A., Cooper, P. K. & Clarkson, S. G. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl Acad. Sci. USA94, 3116–3121 (1997). Google Scholar
Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell101, 159–171 (2000).An excellent recent contribution to the complexities of transcription-coupled DNA repair. CASPubMed Google Scholar
van der Horst, G. T. J. et al. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell89, 425–435 (1997). CASPubMed Google Scholar
Lu, Y. et al. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol. Cell. Biol.21, 1810–1818 (2001). CASPubMedPubMed Central Google Scholar
Stillman, B. Foreword. Cold Spring Harbor Symp. Quant. Biol.65, 21 (2000). Google Scholar
Gillette, T. et al. The proteasome 19S complex regulates nucleotide excision repair in yeast. Genes Dev.15, 1528–1539 (2001). CASPubMedPubMed Central Google Scholar
Yasuhira, S. & Yasui, A. Alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe operates both in nucleus and in mitochondria. J. Biol. Chem.275, 11824–11828 (2000). CASPubMed Google Scholar
Kaur, B. & Doetsch, P. Ultraviolet damage endonuclease (Uve1p): a structure and strand-specific DNA endonuclease. Biochemistry39, 5788–5796 (2000). CASPubMed Google Scholar
Lunn, R. M. et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis21, 551–555 (2000). CASPubMed Google Scholar
Tomescu, D., Kavanagh, G., Ha, T., Campbell, H. & Melton, D. W. Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis22, 403–408 (2001). CASPubMed Google Scholar
Shen, H. et al. An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res.61, 3321–3325 (2001). CASPubMed Google Scholar
Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). CASPubMed Google Scholar
Walker, G. C. Understanding the complexity of an organism's responses to DNA damage. Cold Spring Harb. Symp. Quant. Biol.65, 1–10 (2000). CASPubMed Google Scholar
Jiricny, J. & Nystrom-Lahti, M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev.10, 157–161 (2000). CASPubMed Google Scholar
Robbins, J. H., Kraemer, K. H., Lutzner, M. A., Festoff, B. W. & Coon, G. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal DNA repair. Ann. Intern. Med.80, 221–248 (1974). CASPubMed Google Scholar
Takebe, H. et al. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Res.367, 490–495 (1977). Google Scholar
Kraemer, K. H., Myung, M. L. & Scotto, J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Derm.123, 241–250 (1987). CASPubMed Google Scholar
Prakash, S. et al. Role of yeast and human DNA polymerase η in error-free replication of damaged DNA. Cold Spring Harb. Symp. Quant. Biol.65, 51–59 (2000). CASPubMed Google Scholar
Gerlach, V. L. et al. Human DNA polymerase κ: a novel DNA polymerase in search of a biological function. Cold Spring Harbor Symp. Quant. Biol.65, 41–49 (2000). CASPubMed Google Scholar
Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet.42, 68–84 (1992). CASPubMed Google Scholar
Schmickel, R. D., Chu, E. H. Y., Trosko, J. E. & Chang, C. C. Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics60, 135–139 (1977). CASPubMed Google Scholar
Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H. & Robbins, J. H. Cockayne syndrome and xeroderma pigmentosum. DNA repair disorders with overlaps and paradoxes. Neurology55, 1442–1449 (2000). CASPubMed Google Scholar
Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet.43, 71–102 (2001). CASPubMed Google Scholar
Lehmann, A. R., Kirk-Bell, S. and Mayne, L. Abnormal kinetics of DNA synthesis in ultraviolet light-irradiated cells from patients with Cockayne's syndrome. Cancer Res.39, 4237–4241 (1979). CASPubMed Google Scholar
Venema, J., Mullenders, L. H. F., Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne's syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA87, 4704–4711 (1990). Google Scholar
van Gool, A. J., van der Horst, T. J., Citterio, E. & Hoeijmakers, J. H. J. Cockayne syndrome: defective repair or transcription? EMBO J.14, 4155–4162 (1997). Google Scholar
Hanawalt, P. C. DNA repair. The bases for Cockayne syndrome. Nature405, 415–416 (2000). CASPubMed Google Scholar
Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndrome. J. Am. Acad. Dermatol.44, 891–920 (2001). CASPubMed Google Scholar
Weeda, G. et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet.60, 320–329 (1997). CASPubMedPubMed Central Google Scholar
Stefanini, M. et al. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet.53, 817–821 (1993). CASPubMedPubMed Central Google Scholar